Проекции катетов на гипотенузу прямоугольного треугольника - это отрезки гипотенузы, на которые ее делит высота, т.к. высота - перпендикуляр к прямой ( гипотенузе), а катеты – наклонные из вершины прямого угла.
Катет - среднее пропорциональное между гипотенузой и его проекцией на неё .
В треугольнике на рисунке приложения
Катет Вс=30 см, а ВН=18 - его проекция на гипотенузу.
BC²=АВ•НВ
900=АВ•18
АВ=900:18=50 см
Высота, проведенная к гипотенузе, делит прямоугольный треугольник на подобные. Из подобия следует отношение:
АН:АС=АС:АВ
АН=50-18=32
32:АС=АС:50 ⇒ АС²=32•50
АС=√1600=40 см
-----------
Если обратить внимание на отношение катета и гипотенузы 3:5 в ∆ ВСН, увидим, что этот треугольник - египетский. Отсюда следует АВ=50 см, (т.к. меньший катет=30). а АС=40 см. Получим длины сторон треугольника, отношение которых 3:4:5.
Поделитесь своими знаниями, ответьте на вопрос:
При якому значенні х вектори АА і АN колінеарні, якщо А(3;-8), В(6;1), N(4;0)
2/3
Объяснение:
Как известно, центр тяжести треугольника это точка пересечение его медиан.
Медианы треугольника пересекаются в одной точке и в точке пересечения делятся в отношении 1:2
При повороте треугольника на 180 градусов вокруг центра тяжести, каждая сторона нового треугольника параллельна соответствующей стороне исходного и пересекает часть медианы между ее вершиной и центром тяжести пополам.
Из этого следует что от исходного треугольника этой стороной отсекается "маленький" треугольник подобный исходному но все размеры которого в три раза меньше. Следовательно его площадь в 9 раз меньше площади исходного.
Таких "маленьких" треугольников три и они не входят в общую часть треугольников после поворота. Следовательно общая часть имеет площадь равную площади исходного S минус три площади "маленьких" треугольников 3 * S/9
Имеем S - 3*S/9 = S - S/3 = S *2/3
Таким образом площадь общей части составляет 2/3 от площади исходного треугольника.