По теореме о вписанном угле известно, что вписанный угол в 2 раза меньше центрального угла, опирающегося на ту же дугу, что и вписанный угол.Пусть угол АСВ = х град., тогда угол АОВ = 2х град. По условию задачи угол АОВ на 72 град. больше угла АСВ. Имеем уравнение:2х - х = 39х= 39угло АСВ = 39 град.Тогда центральный угол АОВ = 39*2 = 78 град.ответ: 78 градусовACB = yAOB = x(Т.к. центральный в 2 раза больше вписанного ( по теореме о вписанном и центральном угле опирающихся на одну дугу ))x = 2y=> 2y = y+39y= 39 x = 39*2 = 78
horina12
07.07.2020
Две прямые, перпендикулярные одной плоскости, параллельны. Через параллельные прямые можно провести плоскость. Получаем, что прямые AA1 и BB1 (и AB) лежат в одной плоскости. Точки A1, O, B1 принадлежат двум плоскостям, т.е. лежат на их пересечении, т.е. на одной прямой A1B1. Если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой в этой плоскости. Значит, A1B1 перпендикулярна AA1 и BB1. Угол A1AO равен углу OBB1 как накрест лежащий при параллельных прямых. Значит, треугольники A1OA и B1OB подобны по двум углам (еще один - прямой), а их стороны - пропорциональны. Т.к. по условию А1О:ОВ1=1:2, то АО:ОВ=1:2, т.е. AB=3*AO. Из прямоугольного треугольника AA1O AO=AA1/cos60=4/0.5=8 AB=8*3=24
Объяснение:
∠1=∠4=154°(как накрест лежащие)
∠5=∠8=75°(как накрест лежащие)
∠2=180°-∠1=26°(т.к. углы смежные)
∠2=∠3=26°(как накрест лежащие)
∠6=180°-∠5=105°(смежные углы)
∠6=∠7=105°