mirogall
?>

решить. Номер 5.6.7...???¿???

Геометрия

Ответы

gorovoy-dv4088
Высота, проведенная к основанию равнобедренного треугольника, является так же и медианой. Зная это по теореме Пифагора найдем боковое ребро данного треугольника:
АС= √(АD^2+(AB/2)^2)= √(3^2+4^2)= √(9+16)= √25=5 см  

Радиус окружности описанной около равнобедренного треугольника:  
R=a^2/√((2a)^2-b^2)) (где a – боковое ребро b – основание треугольника)
R=5^2/ √((2*5)^2-8^2)=25/ √(100-64)=25/ √36=25/6=4 1/6 см  

Радиус окружности вписанной в равнобедренный треугольник:  
r=(b/2)* √((2a-b)/(2a+b))
r=(8/2)* √((2*5-8)/(2*5+8))=4 √(2/18)=4/3=1 1/3 см
sryzhova6392
Пусть при пересечении прямых a и b секущей АВ накрест лежащие углы равны: угол 1=2. Докажем, что а параллельна b. Если углы 1 и 2 прямые, то прямые a и b перпендикулярны к прямой АВ и, следовательно, параллельны.

Рассмотрим случай, еогда углы 1 и 2 не прямые.

Из середины О отрещка АВ проведем перпендикуляр ОН к прямой а. На прямой b от точки В отложим отрезок ВН1, равный отрещку АН, и проведем отрезок ОН1. Треугольники ОНА и ОН1В равны по двум сторонам и углу между ними (АО=ВО, АН=ВН1, 1=2), поэтому угол 3=4 и угол 5=6. Из равенства 3=4 следует, что точка Н1 лежит на продолжении луча ОН, т.е. точки Н, О и Н1 лежат на одной прямой, а из равенства 5=6 следует, что угол 6 - прямой (т.к. угол 5 - прямой). Итак, прямые а и b перпендикулярны к прямой НН1, поэтому они параллельны.

Теорема доказана.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

решить. Номер 5.6.7...???¿???
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Yeroshkina411
vps1050
arsen-ai-ti
deputy810
АлександрАлександровна
uchpapt
peshnoshamon
rimmaskis
tany821
Спиридонова
soclive7762
kruttorg
ilyxa08
Ivanovich-A.V
ilez03857