Из прямоугольного треугольника ABD AD^2=AB^2+BD^2=9+16=25 AD=5 Площадь основания равна 2*площадь ABD=2*(3*4/2)=3*4=12 AD параллельно BC, следовательно параллельно B1C1, поэтому AD принадлежит плоскости AB1C1, и это прямая пересечения плоскости основания с плоскостью AB1C1 Пусть BE высота в треугольнике ABD Тогда угол B1EB это угол между плоскостью основания и плоскостью AB1C1, так как BE перпендикулярно AD, B1E перпендикулярно AD по теореме о трёх перпендикулярах. Треугольник B1EB -- прямоугольный треугольник с углом 45 градусов, а следовательно, равнобедренный прямоугольный треугольник, поэтому B1B=BE Чтобы найти высоту BE выразим площадь треугольника ABD двумя площадь ABD = AB*BD/2 = AD*BE/2, отсюда BE=AB*BD/AD=3*4/5=12/5=2,4
Площадь полной поверхности равна 2*площадь основания+площадь боковой поверхности площадь боковой поверхности = периметр основания умножить на высоту периметр основания = AB+BC+CD+AD=3+5+3+5=16 тогда площадь боковой поверхности 16*2,4=38,4 площадь полной поверхности 2*12+38,4=24+38,4=62,4
msburmis
11.08.2021
Иван I Данилович (Калита) (?-31 МР 1340) - князь московский с 1325, Великий князь владимирский с 1328. Вступил на престол после гибели в Орде Юрия Даниловича и передачи ярлыка в Тверь (1325 20 НЯ) . Сыграл большую роль в укреплении влияния и расширении территории Московского княжества. Покупал у бедных князей деревни, сёла и даже города (Белозёрск, Галич, Углич) . В 1332 начал борьбу с Новгородом за "дани новгородские", отвоевал Торжок. Первым из русских князей называл себя "великим князем всея Руси". Его политику поддерживал митрополит Пётр, подготовивший перенос митрополичьей кафедры из Владимира в Москву (Москва становится религиозным центром Руси) . После разгрома москвичами Твери в наказание за убийство тверичами ханских баскаков, Иван получил ярлык на великое княжение (Москва становится политическим центром Руси) . Собирая дань для Орды, он удерживал часть этой дани для собственной казны. Обеспечил длительный мир для Московского княжества. Разделил свои земли м. сыновьями Симеоном, Иваном, Андреем, отдал Москву им в общее пользование. Погребён в Даниловском монастыре.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
В треугольнике ABC точка пересечения высот AH и BK является центром описанной окружности. Докажите, что треугольник ABC равносторонний
Из прямоугольного треугольника ABD
AD^2=AB^2+BD^2=9+16=25
AD=5
Площадь основания равна 2*площадь ABD=2*(3*4/2)=3*4=12
AD параллельно BC, следовательно параллельно B1C1, поэтому AD принадлежит плоскости AB1C1, и это прямая пересечения плоскости основания с плоскостью AB1C1
Пусть BE высота в треугольнике ABD
Тогда угол B1EB это угол между плоскостью основания и плоскостью AB1C1, так как BE перпендикулярно AD, B1E перпендикулярно AD по теореме о трёх перпендикулярах.
Треугольник B1EB -- прямоугольный треугольник с углом 45 градусов, а следовательно, равнобедренный прямоугольный треугольник, поэтому B1B=BE
Чтобы найти высоту BE выразим площадь треугольника ABD двумя
площадь ABD = AB*BD/2 = AD*BE/2, отсюда
BE=AB*BD/AD=3*4/5=12/5=2,4
Площадь полной поверхности равна
2*площадь основания+площадь боковой поверхности
площадь боковой поверхности = периметр основания умножить на высоту
периметр основания = AB+BC+CD+AD=3+5+3+5=16
тогда площадь боковой поверхности 16*2,4=38,4
площадь полной поверхности
2*12+38,4=24+38,4=62,4