Площадь правильного шестиугольника, вписанного в окружность, равна сумме площадей шести правильных треугольников со сторонами, равными радиусу этой окружности. Тогда площадь одного треугольника равна D/6. По формуле эта площадь равна (√3/4)*a², где а=R. Следовательно, √3*R²/4=D/6 => R²=2D√3/9. R=√(2D√3)/3 По Пифагору квадрат диагонали вписанного квадрата равен (2R)²=2а², где а - сторона квадрата. а=2R/√2 = R√2, а площадь - S= а² =2R² . Подставим найденное значение R, тогда сторона вписанного квадрата: а=√(2D√3/9)*√2=√(4D√3)/3. площадь вписанного квадрата: S=a²= 4D√3/9.
Lianchikavon
01.01.2020
Обозначим сторону квадрата 2x. Треугольник АВЕ - равнобедренный. Высота из вершины Е на сторону АВ делит АВ пополам. Точка Е равноудалена от точек А и В и лежит на серединном перпендикуляре к АВ, АВ || СD Поэтому точка Е равноудалена от точек С и D. СЕ=√13.
Обозначим высоту треугольника АВЕ у, тогда высота равнобедренного треугольника СDE будет равна (2x-y) По теореме Пифагора х²+у²=25 х²+(2х-у)²=13
4х²-4ху+12=0 ху-х²=3 х(у-х)=3 х=3 у=4
Сторона квадрата 2х=2·3=6
2х-у=2 Проверка
3²+4²=25 2²+3²=13
ответ 6 м
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Учотирикутній призмі площа основи дорівнює 16см2 а площа кожної з бічних граней 8 см2. знайдіть площу повної поверхні призми
Следовательно, √3*R²/4=D/6 => R²=2D√3/9.
R=√(2D√3)/3
По Пифагору квадрат диагонали вписанного квадрата равен
(2R)²=2а², где а - сторона квадрата.
а=2R/√2 = R√2, а площадь - S= а² =2R² .
Подставим найденное значение R, тогда
сторона вписанного квадрата:
а=√(2D√3/9)*√2=√(4D√3)/3.
площадь вписанного квадрата:
S=a²= 4D√3/9.