Объяснение:
а)
Тр-к АВО=тр-ку СВО - прямоугольные
АО=СО - по условию
<ВАО=<ВСО - по условию
Тр-ки равны по 2 признаку равенства прямоугольных треугольников (если катет и прилежащий острый угол одного тр-ка соответственно равны катету и прилежащему острому углу другого тр-ка, то такие Тр-ки равны)
Тр-к АDO= тр-ку СDO - прямоугольные
АО=СО - по условию
<DAO=<DCO - по условию
Тр-ки равны по 2 признаку равенства прямоугольных треугольников (по катету и прилежащему острому углу)
б)
Тр-к АОВ=тр-ку DOC
AO=DO - по условию
ВО=СО - по условию
<АОВ=<DOC - как вертикальные
Тр-ки равны по 2 сторонам и углу между ними (1 признак)
Тр-к ВОD=тр-ку СОА
ВО=СО - по условию
АО=DO - по условию
<ВОD=<COA - как вертикальные
Тр-ки равны по 2 сторонам и углу между ними (1 признак)
2
Тр-к равнобедренный
Р=3,2 м
Боковая сторона = b м
Основание а=( b-1) м
Найти : а ; b
Р=2b+a
3,2=2b+(b-1)
3,2=2b+b-1
3,2=3b-1
3b=3,2+1
3b=4,2
b=1,4 м - боковая сторона
а=1,4-1=0,4 м - основание
ответ : 1,4 м ; 1,4 м ; 0,4 м
Поделитесь своими знаниями, ответьте на вопрос:
Центр кола, описаного навколо рівнобічної трапеції, належить її більшій основі. Знайдіть радіус цього кола, якщо діагональ трапеції дорівнює 20 см, а проекція діагоналі на більшу основу - 16 см.
66 см²
Объяснение:
Медианы треугольника пересекаются в одной точке, и точкой пересечения делятся в отношении 2:1, считая от вершины.
⇒ ВМ:МК=2:1.
У ΔАМК и ΔАВМ одна и та же высота АН - перпендикуляр, проведенный из вершины А к прямой ВК, содержащей стороны ВМ и МК этих треугольников.
Если два треугольника имеют одинаковые высоты, то отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты) ⇒
Samk/Sabm=1/2 ⇒
11/Sabm=1/2 =>
22=Sabm.
Sabk=22см²+11см²=33см²
медиана ВК делит ΔАВС на два равновеликих т.е Sabk = Skbc.
⇒
Sabc=33*2=66см²