Все этапы построения показаны на рисунках приложения.
Этап 1) Вне прямой а отмечаем точку О.
Из О на прямой а с циркуля произвольного традиуса отмечаем точки 1 и 2.
Из этих точек, как из центров, проводим две окружности так, чтобы они пересеклись по разные стороны от прямой а. Соединим точки пересечения окружностей прямой. Точку пересечения этой прямой с прямой а обозначим 3.
–––––
Этап 2) Из т.О радиусом, равным длине отрезка О3, проведем окружность.
Из т.3 тем же радиусом на проведенной окружности отметим точку 4. Стороны треугольника 4О3 равны радиусу, он - равносторонний, поэтому угол 4О3=60°
––––––––––
Этап 3) Продлим радиус О4 (удобно продлить на его длину) и отметим точку 5. Для данной задачи точка 5 будет лежать на прямой а, т.к. в прямоугольном ∆ 3О5 с острым углом при т.О=60° гипотенуза О5 равна двум радиусам ( двум катетам О3).
Общепринятым построения перпендикуляра к прямой проведем прямую, проходящую через т.4 и перпендикулярную к отрезку О5 (чертим окружности с центрами в т.О и т.5, точки их пересечения 6 и 7 соединяем). Отмечаем прямую а1. Она перпендикулярна радиусу О4 и повёрнута вокруг т.О на 60° по часовой стрелке.
Поделитесь своими знаниями, ответьте на вопрос:
з контрольною роботою з контрольною роботою ">
ответ: ВЕ=20см
Объяснение: так как ВN касательная, то диаметр ВМ с ней образуют прямой угол 90°. Из этого следует что ∆MBN-прямоугольный с катетами ВМ и BN. По свойствам угла 30°, катет, лежащий напротив него равен половине гипотенузы, значит гипотенуза МN=20×2=40см. Так как медиана делит гипотенузу пополам, то ME=EN=20см. Если угол М= 30°, то угол N= 90-30=60°. Рассмотрим ∆BEN. B нём известны 2 стороны и угол и теперь найдём по теореме косинусов ВЕ:
ВЕ²=EN²+BN²-2×EN×BN×cosN
BE²=20²+20²-2×20×20×cos60°=
=400+400-2×400×½=800-800×½=
=800-400=400; BE²=400; BE=√400=20см;. ВЕ=20см
Также, медиана, проведённая из прямого угла к гипотенузе, равна её половине.
Т.е ВЕ=40÷2=20см