можно было и больше поставить, задачка прикольная).. итак поехали:
стороны основания 5, 12 и 13 - это стороны прямоугольного треугольника
(25+144=169 теорема пифагора), а значит радиус вписаной окружности в основание равен р=(5+12-13)/2=2.. есть такая формула)
т.к. угол наклона у граней одинаковый, то и высоты у треугольников составляющих эти грани тоже будут одинаковы и будут составлять с высотой пирамиды и радиусом вписаной окружности в основание одинковые прямоугольные треугольники, и будут равны:
Н=корень( (4*корень(2))^2 + 2^2 ) = 6
площадь боковой поверхности пирамиды равна сумме площадей её граней, найдём каждую полупроизведением высот на их основания:
S= 5*6/2+12*6/2+13*6/2 = 15+36+39 = 90
Поделитесь своими знаниями, ответьте на вопрос:
На рисунке Р и Н- середины сторон АВ ВС, ВК-высота треугольника АВС. Найдите площадь треугольника АВС, если РН=18 см, ВК=17 см 5 задание, надо расписать На рисунке Р и Н- середины сторон АВ ВС, ВК-высота треугольника АВС. Найдите площадь треугольника А">
Для простоты оставим на рисунке только диаметры шаров.
Все 5 шаров касаются попарно друг друга. Точки их касания лежат на
серединах отрезков, соединяющих центры шаров. Эти отрезки образуют правильную четырехугольную пирамиду, все ребра которой равны 2r.
Половина диагонали квадрата, составленного из отрезков, соединяющих центры
четырех шаров (основание пирамиды), равна DO=r√2. Тогда ВО (высота пирамиды) равна по Пифагору из треугольника DOB:
ВО=√(DB²-DO²) или ВО=√(4r²-2r²) =r√2.
Точка О (центр квадрата) расположена на расстоянии r от плоскости, на которой
лежат 4 шара. Точка В (центр пятого шара) - на расстоянии r от верхней точки М этого шара. Тогда искомое расстояние MN=BO+2r или MN=r√2+2r = r(√2+2).
ответ: искомое расстояние равно r(√2+2).