levsha-27509
?>

Только ответы нужны Задание 1. Параллелограммы АBCD и ABKL лежат в разных плоскостях. Какое из утверждений верно: плоскость АВС пересекается прямой KL ; плоскость АВС и прямая KL параллельны; прямая АС параллельна плоскости BKL . Запишите правильный ответ. Задание 2. Дано треугольник MNK с прямым углом N и углом К равным 45 градусов. Один из катетов треугольника равен 4. Найти гипотенузу. ответ округлить до десятых. Задание 3. Найти периметр осевого сечения конуса, если образующая конуса равна диаметру основания, а диаметр основания равен 7. Задание 4. Вычислите площадь боковой поверхности прямой призмы, основание которой – параллелограмм со сторонами 3 и 7 , а боковое ребро – 4 . Задание 5. Во сколько раз увеличится объем шара, если его радиус увеличить в три раза?

Геометрия

Ответы

NurlanAleksandrovich
Добрый день! Давайте решим поочередно каждое уравнение и найдем вектор x.

a) Согласно заданию, у нас есть уравнение AB+x=AK. Чтобы найти вектор x, нужно перенести вектор AB на другую сторону уравнения, а затем из уравнения вычесть AK:

AB + x - AB = AK - AB

Если мы вычитаем один и тот же вектор (в данном случае AB) из обоих сторон уравнения, то он исчезает. Поэтому получаем:

x = AK - AB

b) Дано уравнение (PE+EF)+x=PA. Точно так же, чтобы найти вектор x, нужно перенести вектор (PE+EF) на другую сторону уравнения и вычесть PA:

(PE + EF) + x - (PE + EF) = PA - (PE + EF)

Здесь мы также вычитаем один и тот же вектор (PE + EF) из обеих сторон уравнения, и они исчезают:

x = PA - (PE + EF)

c) Нам дано уравнение MN + x + NA = ME + EP. Чтобы найти вектор x, нужно перенести все векторы, кроме x, на другую сторону уравнения:

MN + x + NA - MN - NA = ME + EP - MN - NA

В этом случае мы вычитаем два вектора MN и два вектора NA, они исчезают:

x = ME + EP - MN - NA

Таким образом, мы решаем каждое уравнение, переносим нужные векторы и вычитаем их из обеих сторон, чтобы найти значение вектора x.

Надеюсь, это помогло вам понять, как решить данные уравнения и найти вектор x. Если возникнут еще вопросы, буду рад помочь!
okunevo2010
1. Школьник, в данном вопросе мы должны найти площадь параллелограмма, у которого стороны равны 9 и 14, и высота равна 10.

Для начала, нужно найти длину основания параллелограмма. Основание параллелограмма это одна из его сторон. Дано, что одна из сторон равна 9, поэтому длина основания равна 9.

Теперь мы можем найти площадь параллелограмма, используя формулу: площадь = основание * высота. Вставляем значения в формулу: площадь = 9 * 10 = 90.

Таким образом, площадь параллелограмма равна 90 квадратным единицам.

2. В этом вопросе мы должны найти площадь параллелограмма с основой 14 и высотой 10.

Данные нам уже даны, и мы можем использовать ту же самую формулу: площадь = основание * высота. Вставляем значения: площадь = 14 * 10 = 140.

Таким образом, площадь параллелограмма равна 140 квадратным единицам.

3. Здесь нам нужно найти высоту параллелограмма, при условии что его площадь равна 30, а одна из сторон равна 5.

Для начала выразим высоту параллелограмма из формулы площади: площадь = основание * высота. Вставляем значения: 30 = 5 * высота.

Делим обе стороны уравнения на 5: 6 = высота.

Таким образом, высота параллелограмма равна 6 единицам.

4. В этом вопросе нужно найти длину стороны параллелограмма, у которого сумма длин сторон 5 и 12, а диагональ равна сумме этих сторон.

Сумма длин сторон параллелограмма равна 5 + 12 = 17.

Дано, что диагональ равна этой сумме, поэтому длина стороны равна 17.

5. Здесь нам нужно найти площадь прямоугольника, у которого периметр равен 30, а одна из сторон на 5 меньше другой.

Пусть x - длина большей стороны, тогда другая сторона будет равна x - 5.

Периметр прямоугольника равен сумме длин всех его сторон, поэтому у нас есть уравнение: 2x + 2(x - 5) = 30.

Раскрываем скобки и сокращаем слагаемые: 2x + 2x - 10 = 30. 4x - 10 = 30.

Добавляем 10 к обеим сторонам уравнения: 4x = 40.

Делим обе стороны на 4: x = 10.

Таким образом, большая сторона прямоугольника равна 10, а меньшая сторона равна 10 - 5 = 5.

Площадь прямоугольника вычисляется по формуле: площадь = длина * ширина. Вставляем значения: площадь = 10 * 5 = 50.

Таким образом, площадь прямоугольника равна 50 квадратным единицам.

Вот так, школьник, мы решили все задания.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Только ответы нужны Задание 1. Параллелограммы АBCD и ABKL лежат в разных плоскостях. Какое из утверждений верно: плоскость АВС пересекается прямой KL ; плоскость АВС и прямая KL параллельны; прямая АС параллельна плоскости BKL . Запишите правильный ответ. Задание 2. Дано треугольник MNK с прямым углом N и углом К равным 45 градусов. Один из катетов треугольника равен 4. Найти гипотенузу. ответ округлить до десятых. Задание 3. Найти периметр осевого сечения конуса, если образующая конуса равна диаметру основания, а диаметр основания равен 7. Задание 4. Вычислите площадь боковой поверхности прямой призмы, основание которой – параллелограмм со сторонами 3 и 7 , а боковое ребро – 4 . Задание 5. Во сколько раз увеличится объем шара, если его радиус увеличить в три раза?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

kogakinoa
ann328389
vodoleytatyana
tany821
kapitan19
Yeremeev
vyborovvs
tatianaavoronina66
marvindkc
oksana-popova
vis-lyubov8832
nastya3213868
VSpivak3122
gsktae7
vikka30