Не могу нарисовать рисунок, но попытаюсь объяснить.
Пусть имеется прямоугольный треугольник ABC с гипотенузой AC и прямым углом при вершине В.
Пусть точка О – пересечение заданных биссектрис. Один из углов при О = 100 градусов
Вариант 1.
Расcмотрим треугольник ABO. Угол AOB=100, угол ABO=45 (потому что BO – биссектриса угла В, который 90 град)
Тогда угол BAO=180-100-45=35
Угол BAC вдвое больше BAO и равен 35*2=70.
Оставшийся уголACB =180-90-70=20.
Вариант 2.
(если вдруг возникнет иллюзия считать, что распределение углов при точке О другое – то есть 100 град = угол AOD, где точка В – точка пересечения биссектрисы из вершины B со стороной AC, То в таком случае:
Всё равно рассмотрим треугольник ABO. Только угол AOB=180-100=80. угол ABO всё равно 45 (потому что BO – биссектриса угла В, который 90 град)
Тогда угол BAO=180-80-45=55.
Угол BAC в этом случае вдвое больше BAO и равен 55*2=110. И тут упс – сумма двух углов начального прямоугольного треугольника уже становится больше 180, а ведь есть ещё и третий угол. Поэтому распределение углов при точке О только такое, как в первом варианте решения. Второй вариант нежизне
Поделитесь своими знаниями, ответьте на вопрос:
ABCD A1B1C1D1 – правильная четырехугольная призма. Найти ееобъем, если ВB1=ВD=2см.
ответ: v=4см³
Объяснение: так как в основе правильной четырёхугольника призмы лежит квадрат, то
АВ=ВС=СД=АД=А1В1=В1С1=С1Д1=А1Д1.
ВД в квадрате является диагональю, которая делит его углы пополам (90÷2=45°) и образует два равных равнобедренных прямоугольных треугольника АВД и ВСД в которых АВ и АД, ВС и СД являются катетами, а ВД гипотенуза. В равнобедренном прямоугольном треугольнике каждый катет= гипотенуза /√2, поэтому
АВ=АД=ВС=СД=2/√2см. Теперь найдём объем прищмы, зная её стороны по формуле: v=a²×h, где а- сторона основания, h- высота призмы:
V=(2/√2)²×2=(2/√2)²×2=4/2×2=4см³