ответ: 26 см
Объяснение:
Пусть ΔАВС- равнобедренный с вершиной А и углами при основании В и С. ВМ- высота, проведенная в боковой стороне.
Высота, проведенная к боковой стороне образует ∠90°. рассмотрим ΔВМС. он является прямоугольным, так как ∠ВМС - прямой. Так, как угол при вершине =120°, то каждый из углов при основании равен 30°. Катет прямоугольного треугольника, который лежит напротив острого угла 30° равен половине гипотенузы.
Катет ВМ (высота) - 13 см, значит гипотенуза (основание) ВС = 13×2 = 26 см.
Поделитесь своими знаниями, ответьте на вопрос:
Прямоугольная трапеция с основаниями 10 и 14 см и высотой 3 см вращается около большего основания. Найти объём тела вращения.
MN = 36
угол M = 30°
угол NPK = 90°
угол NKM = 90°
Найти:
MP, PN - ?
Решение:
Рассмотрим треугольник NKM:
NK = 0.5 NM (т. к. в прямоугольном треугольнике напротив угла в 30° лежит катет, равный половине гипотенузы)
NK=0.5 × 36 = 18
Рассмотрим треугольник KPM:
угол NPK = угол KPM = 90°
угол PKM = 180° - 90° - 30° = 60° (т. к. сумма углов треугольника равна 180°)
Рассмотрим треугольник NPK:
угол NKP = угол NKM - угол PKM
угол NKP = 90° - 60° = 30°
PN = 0.5 NK (т. к. в прямоугольном треугольнике напротив угла в 30° лежит катет, равный половине гипотенузы)
PN = 0.5 × 18 = 9
MP = MN - PN
MP = 36 - 9 = 27
ответ: MP = 27; PN = 9.