Теорема 1 (теорема Пифагора). В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы, то есть
c2 = a2 + b2,
где c — гипотенуза треугольника.
Теорема 2. Для прямоугольного треугольника (рис. 1) верны следующие соотношения:
a = c cos β = c sin α = b tg α = b ctg β,
где c — гипотенуза треугольника.
Теорема 3. Пусть ca и cb — проекции катетов a и b прямоугольного треугольника на гипотенузу c, а h — высота этого треугольника, опущенная на гипотенузу (рис. 2). Тогда справедливы следующие равенства:
h2 = ca∙cb, a2 = c∙ca, b2 = c∙cb.
Теорема 4 (теорема косинусов). Для произвольного треугольника справедлива формула
a2 = b2 + c2 – 2bc cos α.
Теорема 5. Около всякого треугольника можно описать окружность и притом только одну. Центр этой окружности есть точка пересечения серединных перпендикуляров, проведенных к сторонам. Центр описанной окружности лежит внутри треугольника, если треугольник остроугольный; вне треугольника, если он тупоугольный; на середине гипотенузы, если он прямоугольный (рис. 3).
Теорема 6 (теорема синусов). Для произвольного треугольника (рис. 4) справедливы соотношения
Теорема 7. Во всякий треугольник можно вписать окружность и притом только одну (рис. 5).
Центр этой окружности есть точка пересечения биссектрис трех углов треугольника. Центр вписанной окружности лежит всегда внутри треугольника.
Теорема 8 (формулы для вычисления площади треугольника).
4
Последняя формула называется формулой Герона.
Теорема 9 (теорема о биссектрисе внутреннего угла).
Биссектриса внутреннего угла треугольника (рис. 6) делит противоположную сторону на части, пропорциональные прилежащим сторонам треугольника, то есть
b : c = x : y.
Теорема 10 (формула для вычисления длины биссектрисы) (см. рис. 6)
.
Теорема 11 (формула для вычисления длины биссектрисы).
Теорема 12. Медианы треугольника пересекаются в одной точке и делятся в этой точке на отрезки, длины которых относятся как 2 : 1, считая от вершины (рис. 7).
Теорема 13 (формула для вычисления длины медианы).
Доказательства некоторых теорем
Доказательство теоремы 10. Построим треугольник ABC и проведем в нем биссектрису AD (рис. 8). Пусть CD = x и DB = y. Применим к треугольникам ABD и ACD теорему косинусов:
Поделитесь своими знаниями, ответьте на вопрос:
В треугольнике проведены высоты АА1, ВВ1, СС1. Чему может быть равен угол А треугольника , если про углы треугольника А1В1С1 известно, что ∠А1=44∘, ∠В1=66∘, ∠С1=70∘? Знаю, этот вопрос уже задавали, но ответ был неверный. Там предполагается несколько ответов.
1.
Только что решал эту же задачу прощения, без чертежа, нет такой возможности, но прямоугольный треугольник, надеюсь, начертить легко./ Узловые моменты объясняю.
Она на применение теоремы Пифагора. Здесь наклонная MN- гипотенуза, проекция наклонной на плоскость α, равная 8см, это катет. А расстояние до плоскости, подлежащее определению, это другой катет прямоугольного треугольника. Треугольник египетский. Два катета 6см и 8 см, значит, гипотенуза 10 см
ответ 10 см
2.
М- середина АС, значит, ВМ- медиана ΔАВС, но она проведена к основанию АС равнобедренного треугольника АВС, значит, является и высотой, т.е. ВМ⊥АС, по условию МQ⊥ВМ.
Значит, прямая ВМ перпендикулярна двум пересекающимся прямым плоскости АQC, конкретнее, MQ и AС,
и по признаку перпендикулярности прямой и плоскости, т.е.
если прямая перпендикулярна к двум пересекающимся прямым, лежащим в одной плоскости, то она перпендикулярна к этой плоскости.
ВЫВОД. ВМ⊥ (АQC), доказано.