Нехай ∠АВС = х (х > 0), тоді ∠ВСА = х + 30°, але також, за властивістю прямокутного трикутника ∠ВСА = 90° - х. Праві частини отриманих рівнянь можна прирівняти, щоб отримати значення х.
х + 30° = 90° - х
2х = 60
х = 30° = ∠АВС
"...різниця гіпотенузи і меншого катета дорівнює 8..."
Мешний катет лежить навпроти меншого гострого кута. Тому очевидно, що ∠АВС - мешний гострий кут, а АС - мешний катет.
Нехай гіпотенуза ВС = у (у > 0), тоді:
BC - AC = 8; y - AC = 8; AC = y - 8
Катет навпроти кута 30° дорівнює половині гіпотенузи
у це і є гіпотенуза
Відповідь: 16 см.
62°
Дано: ΔАВС,∠В=56°, ∠А=∠С, АР и МС - биссектрисы
Найти :∠ МОА-?
Поставь на рисунке точку О- точку пересечения биссектрис.
Этот треугольник равнобедренный и два равных угла лежат при его основании .
По теореме о трёх углах Δ найдем углы при основании
∠А=∠С=(180°-∠В)/2=(180°-56°)/2=62°.
ΔАОС- равнобедренный, так как
∠САО=∠АОС =62°:2=31°
По теореме о трёх углах Δ найдем ∠АОС=180-2*31°=118°
∠АОС и ∠МОА - смежные
∠МОА=180°-118°= 62°
Вариант 2
Можно не искать ∠АОС, а сказать,
∠МОА- внешний угол треугольника ΔАОС
∠МОА= ∠САО+∠АСО=62°
Тут выбирай то , что ты знаешь, чтобы не "спалиться" на списывании
Поделитесь своими знаниями, ответьте на вопрос:
Найти площадь трапеции у которой основания равны 142 см и 89 см, диагонали 120 см и 153 см.
Площадь трапеции - полусумма оснований на высоту
S = 1/2(a+b)*h
a = 142 см
b = 89 см
S = 231h/2
Площадь треугольника - половина произведения основания треугольника, равного а+b = 231 см на высоту
S = 1/2(a+b)*h
S = 231h/2
Площади совпадают
Вычислим площадь треугольника со сторонами 153, 120 и 142+89 = 231 см по формуле Герона
Полупериметр
p = (153 + 120 + 231)/2 = 252 см
Площадь
S² = p(p-a)(p-b)(p-c)
S² = 252(252-153)(252-120)(252-231)
S² = 69155856
S = 8319 см²