1) Площадь трапеции равна полусумме произведения ее оснований на высоту.
В трапеции АВСD найдем высоту ВМ
В треугольнике АВМ :
ВМ - катет и высота
АВ=25см - гипотенуза
АМ=(АD-BC):2 - катет
АМ=(24-10):2=7(см)
BM^2=АВ^2-АМ^2
BM =корень из (25*25-7*7)=24(см)
S=(24+10):2*24=408(см2)
S=408см2 - площадь трапеции
2) Средняя линия трапеции равна полусумме ее оснований
В трапеции АВСD
(ВC+AD)=11*2=22(см)
АD=2+4+7=13(частей)
ВС=4части
13+4=17(частей) - составляют 22см
22:17=1,3(см) - 1 часть
АD=1,3 * 13 = 16,9(см)
ВС=1,3*4=5,2(см)
3) Диагонали ромба пересекаются под прямым углом
АВСD - ромб
О - точка пересечения диагоналей
Рассмотрим треугольник АОВ, он прямоугольный
В треугольнике АОВ:
<АОВ=90град.
180-90=90град. - сумма (<AВО + <BАО)
7+8=15 - частей сумма (<AВО + <ВАО), что составляет 90 градусов
90:15=6(град) - 1 часть
<BAO=6*7=42 град.
<A=42*2=84 град.
<ABO=90-42=48 град.
<B=48*2=96 град.
ответ: углы ромба 84 и 96 градусов.
Поделитесь своими знаниями, ответьте на вопрос:
Сириус геометрия нужен ответ
Нужен ответ29788
Школы
Это интересно
Репетиторы
Задать вопрос
Войти

Аноним
Геометрия
30 августа 18:11
Диагонали ромба равны 10 и 12 см. Найдите его площадь и периметр.
ответ или решение2

Горшков Александр
Площадь ромба можно определить как половину произведения диагоналей:
S = 0,5 * d1 * d2 = 0,5 * 10 * 12 = 60 см2.
Рассмотрим прямоугольный треугольник, в котором половины диагоналей ромба - катеты, сторона ромба - гипотенуза. По теореме Пифагора:
a2 = (d1 / 2)2 + (d2 / 2)2 = (10 / 2)2 + (12 / 2)2 = 52 + 62 = 25 + 36 = 61;
Сторона ромба равна a = √61 ≈ 7,81 см.
Периметр ромба равен сумме длин его сторон: Р = 4 * а = 4√61 ≈ 31,24 см.