Ломаная - это фигура, не лежащая на одной прямой.
Звенья - это отрезки, из которых составлена ломаная.
Концы отрезков - вершины ломаной
Длина ломаной - сумма длин всех звеньев.
2. . Многоугольник - это геометрическая фигура, состоящие из замкнутой ломаной.
Сторона - один отрезок многоугольника
Диагональ - отрезок соединяющий две любые не соседние вершины.
Вершина - место пересечений линий в многоугольнике
Периметр - длина ломаной.
3. Выпуклый многоугольник - это мнгоугольник, который лежит по одну сторону от каждой прямой, проходящей через две его соседние вершины.
4. (n -2) . 1800
n - кол- во углов
5. стр. 99 Так как сумма углов выпуклого n-угольника равна (n-2)*180˚, то сумма углов четырёхугольника равна 360˚
6.
7. Параллелограмм - это четырёхугольник, у которого противолежащие стороны попарно параллельны. Является выпуклым четырехугольником.
8-9
Для параллелограмма верно свойство: Противолежащие стороны попарно равны.
А еще есть признак параллелограма: если в четырехугольнике противолежащие стороны попарно равны, то он паралеллограмм.
10 - 101-102
11. Трапеция - четырёхугольник у которого две стороны параллельны а две другие не параллельны
Стороны - основания и боковые стороны.
12 Трапеция, у которой боковые стороны равны между собой, называется равнобедренной.
Трапеция, один из углов которой прямой, называется прямоугольной.
14 Прямоугольник - это паралелограмм, у которого все углы прямые
Док-во на стр. 108
14 стр. 108
15. Ромб - это паралелограмм, у которого все стороны равны. Док-во - стр. 109.
17.Квадрат - прямоугольник, у которого все стороны равны.
18 Две точки называются симметричными относительно прямой а, если это прямая проходит через середину отрезка и перпендикулярна к нему.
19. . Фигура называется симметричной относительно прямой а, если каждой точки фигуры симметричная ей точка относительно прямой а также принадлежит этой фигуре.
20. Две точки называются симметричными относительно точки О, если О - середина отрезка.
21.Фигура называется симметричной относительной точки О, если каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре.
Поделитесь своими знаниями, ответьте на вопрос:
с геометрией дано: паралелограм ABCD построен на векторах а и b как на сторонах. Известно, что модуль вектора а равен 3, модуль вектора b равен 5, модуль векторов а+b равен 7. найти: величину угла между векторами a и b(в градусах)
дано: паралелограм ABCD построен на векторах а и b как на сторонах. Известно, что модуль вектора а равен 3, модуль вектора b равен 5, модуль векторов а+b равен 7.
найти: величину угла между векторами a и b(в градусах)
Объяснение:
Дано: ABCD- параллелограмм, построен на векторах а и b как на сторонах. Известно, что модуль вектора| а |=3, | b|=5, | а+b|=7.
Найти: величину угла между векторами a и b
Решение
Пусть АВ=а (вектора), ВС=b(вектора). Тогда суммой двух векторов, по правилу треугольника АВ+ВС=АС (вектора). По условию АВ+ВС=а+b(вектора), поэтому
АС= а+b(вектора), а |АС|= |а+b|=7 (вектора).
В ABC вектора ВС=АД .Тогда углом между векторами а и b будет ∠ВАD=180°-∠АВС.
ΔАВС, АВ=3,ВС=5, АС=7.
По т. косинусов :
АС²=АВ²+ВС²-2*АВ*ВС*cosВ,
49=9+25-30*cosВ,
cosВ=-0,5
∠В=120 , а значит ∠ВАD=180°-120°=60°.