Один з кутів прямокутного трикутника, що лежить в освнові даної прямої призми 45 градусів, значить і другий кут дорівнює 45 градусів (90-45=45 або 180-90-45=45).
Два кути трикутника рівні, значить він рівнобедрений і катети трикутника між собою рівні.
a=b=6 см
ГІпотенуза по теоремі Піфагора дорівнює с=корінь(a^2+b^2)=корінь(6^2+6^2)=6*корінь(2)
Площа прямокутного трикутника дорівнює половині добутку катетів
S(ABC)=ab/2=6*6/2=18 кв.см
Обєм прямої призми дорівнює добітку площі основи на висоту
V=S(ABC)*h
тому
висота призми h=V/S(ABC)
h=108/18=6 см
Бічна поверхня призми - прямокутники, де довжина прямокутника - це одна із сторін прямокутного трикутника, ширина прямокутника - висота призми
Площа прямокутника добуток його довжини на ширину.
Площа бічної поверхні дорівнює сумі площ бічних граней
Sб=ah+bh+ch=(a+b+c)h
Sб=(6+6+6корінь(2))*6=6*6*(1+1+корінь(2))=36*(2+корінь(2))=72+36корінь(2) см
Поделитесь своими знаниями, ответьте на вопрос:
в параллелограмме abcd точка e лежит на стороне ab отрезки de ce являются биссектрисами углов соответственно известно что площадь параллелограмма равна 48 а отрезок се имеет длину 6 найти длину ад НУЖЕН ОТВЕТ
Треугольник СЕD подобен треугольнику АВС, так как <DEC=108° (B треугольнике АDE <ADE=90°, <DAE=18°, a <DEA=72°. Тогда <DEC=108° как смежный с <DEA).
Проведем KD параллельно АС. Тогда треугольник BKD подобен АВС и <BKD=36°. Отсюда <AKD=144°, как смежный с <BKD, а <KDA=18° (в треугольнике АКD по сумме углов треугольника: 180-144-18 = 18).
Следовательно, треугольник АКD равнобедренный и АК=КD. Но АК=DC (так как АВ=ВС, а ВК=ВD). Значит и КD=DC.
Тогда треугольники КВD и СЕD равны по стороне и двум прилежащим к ней углам.
Отсюда ВD=DE, что и требовалось доказать.