pnat1235
?>

Медианы равнобедренного треугольника, проведённые к основанию и боковой стороне, равны соответственно m и n. Найти стороны треугольника.

Геометрия

Ответы

Vitproficosmetics

ответ: 2/3√(4n²-m²) и 2/3√(2m²+n²)

Объяснение:


Медианы равнобедренного треугольника, проведённые к основанию и боковой стороне, равны соответственн
Valerevna

1. Найти угол между векторами AС и АB.

\overrightarrow{AC}=(1-1;\;2-3;\;1-0)=(0;\;-1;\;1)\\ \\ \overrightarrow{AB}=(2-1;\;3-3;\;1-0)=(1;\;0;\;1)

|\overrightarrow{AC}|=\sqrt{0^2+(-1)^2+1^2} =\sqrt{2} \\ \\|\overrightarrow{AB}|=\sqrt{1^2+0^2+1^2} =\sqrt{2}

cos\angle CAB=\frac{\overrightarrow{AC}\cdot\overrightarrow{AB}}{|\overrightarrow{AC}|\cdot|\overrightarrow{AB}|}=\frac{0\cdot1+(-1)\cdot0+1\cdot1}{\sqrt{2}\cdot \sqrt{2} } =\frac{1}{2} \quad \Rightarrow\quad \angle CAB=arccos\frac{1}{2}=60^{\circ}

*Можно искать не косинус угла, а найти длину вектора BC, тогда ΔABC -- равносторонний и углы равны по 60°.

2. Найти координаты центра сферы и длину ее радиуса. Найти значение m.

Приведём уравнение к общему виду (x - x₀)² + (y - y₀)² + (z - z₀)² = R²:

x^2+y^2+z^2-2y+4z=11\\ \\ x^2+(y^2-2y+1)+(z^2+4z+4)-1-4=11\\ \\ x^2+(y-1)^2+(z+2)^2=16

Тогда O (x₀; y₀; z₀) -- центр сферы, O (0; 1; -2),

R² = 16  ⇒  R = 4

Если точка принадлежит сфере, то подставив её координаты в уравнение, получится верное равенство. Подставим точки A и B в уравнение сферы:

\left \{ {{m^2+(1-1)^2+(-2+2)^2=16,} \atop {(\sqrt{3} )^2+(m-6-1)^2+(2+2)^2=16}} \right. \\ \\ -\left \{ {{m^2=16,} \atop {m^2-14m+60=16}} \right. \\ \\ m^2- (m^2-14m-60)=16-16\\ \\ 14m+60=0\\ \\ m=-\frac{30}{7}

3. Найти уравнение плоскости α.

Ax + By + Cy + D = 0 -- общее уравнение плоскости.

n = (A; B; C) -- вектор нормали  ⇒ A = 1, B = 2, C = 3, тогда

\alpha:\;\; x + 2y+ 3z + D = 0

Если точка принадлежит плоскости, то подставив её координаты в уравнение, получится верное равенство:

3 + 2\cdot(-2)+ 3\cdot 4 + D = 0\\ \\ 11 =-D\\ \\ D=-11\\ \\ \alpha :\;\;x+2y+3z-11=0

4. Найти общее уравнение прямой.

Общее уравнение прямой представляет собой систему уравнений двух пересекающихся плоскостей. Решение этой системы есть пересечение плоскостей, то есть прямая.

Зададим прямую параметрически:

\left\{\begin{matrix}x=x_2+(x_2-x_1)\lambda,\\ y=y_2+(y_2-y_1)\lambda,\\ z=z_2+(z_2-z_1)\lambda;\end{matrix}\right\\\\\\ \left\{\begin{matrix}x=2+(2-1)\lambda,\\ y=0+(0-(-2))\lambda,\\ z=4+(4-3)\lambda;\end{matrix}\right\\\\\\ \left\{\begin{matrix}x=2+\lambda,\\ y=2\lambda,\\ z=4\lambda;\end{matrix}\right

Исключим параметр λ:

\left\{\begin{matrix}\lambda=x-2,\\ y=2(x-2),\\ z=4+(x-2);\end{matrix}\right\\\\ \\ \left\{\begin{matrix}y=2x-4,\\ z=x+2;\end{matrix}\right\\ \\\\\ \left\{\begin{matrix}y-2x+4=0,\\ z-x-2=0;\end{matrix}\right

Последняя система -- это общее уравнение прямой.

Popova-Erikhovich
Пирамида называется правильной, если основанием её является правильный многоугольник, а вершина проецируется в центр основания, то есть боковые грани пирамиды равны и наклонены относительно основания под одним углом.
Сечение amb, площадь которого надо найти - равнобедренный треугольник с основанием ab и боковыми сторонами am и bm. Основание нам дано - это сторона основания пирамиды, равная 8. Боковые грани - равные равнобедренные треугольники. Значит углы при вершинах граней равны 36°, равны и все углы при основании граней (180°-36°):2 = 72°.
В треугольнике asm  <asm=36°(дано), <sam=36°(как половина угла sac=72°) и <amb=(180°-72°)=108°. Углы ams и amc смежные. Тогда <amc=180°-108°=72° и значит треугольник amc равнобедренный и am=ac=8. Но am=bm, а ac=ab. Значит сечение - правильный треугольник и его площадь равна:
Sabm = (√3/4)*a², где а - сторона треугольника.
Итак,  Sabm = (√3/4)*64 = 16√3.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Медианы равнобедренного треугольника, проведённые к основанию и боковой стороне, равны соответственно m и n. Найти стороны треугольника.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

kia80
ASRodichev
ЕлизаветаВладимирович
juliaydodova
Tatyana1374
Marina281
oloinics
miyulcha8077
afomin63
md-masya
ksen1280
ВладимировнаАлександр1421
Найдите стороны треугольника, задача с 2 по 4
tarja4140
gassvetlana
cherkashenko87543