afoninia
?>

решить или 11 Если сможете решите оба

Геометрия

Ответы

Merkuloff78

1) х=9

2) S(ACD)=S(BCD)

Объяснение:

1.

По свойству биссектрисы треуголь

ника: х:3=6:2

х=6×3:2

х=9

между х и 9 нужно поставить

знак равенства.

2.

1)Треугольник АВС прямоугольный:

<В=180°- (90°+30°)=60°

Из треуг.ВСD: <D=<B=60°

как углы при основании ВД равно

бедренного треугольника.

<ВСD=180°-60×2=60°

Получили, что в треуг. ВСD все уг

лы равны, следовательно, треуг. ВСD

равносторонний.

2)Из треуг. АСВ:

СВ - катет, лежащий против угла в

30°, следовательно,

СВ=1/2АВ

АВ=2×СВ=2×СД

АD=DВ

3)

У треугольников АСD CDB высоты

совпадают:

S(ACD)=AD×h/2=DB×h/2

S(BCD)=DB×h/2

S(ACD)=S(BCD)

между S(ACD) и S(BCD) нужно

поставить знак равенства.

shangina1997507
Обозначим исходную длину гипотенузы CB (длина горки) буквой L
По условию L = 7 м
После опускания горки, уменьшения её высоты, длина горки станет
C'B = (L-2)
Нам неизвестна высота горки как исходная CD, так и новая C'D, поэтому введем неизвестную величину x, которой обозначим исходную высоту горки, тогда по условию (x-4) будет новой высотой горки.
Тогда, учитывая, что горизонтальная протяженность DB будет оставлена без изменений, применим теорему Пифагора, получим
(DB^2) =(CB^2) - (CD^2) = (L^2) - (x^2) = 49 - (x^2 )
С другой стороны
(DB^2) =(C'B^2) - (C'D^2) = 25 - (x-4)^2 Тогда будем иметь
49 - (x^2 ) = 25 - (x-4)^2, отсюда
x^2 -(x-4)^2 = 24, отсюда x^2 - x^2 +8x-16 = 24, отсюда
8x = 40, отсюда x=5 есть исходная высота горки
C'D=(x-4) = 5 - 4 = 1 есть новая высота горки
Ответ: 1 м.
Klochkov malakhov1974
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿ ⣿⣿⣿⣿⣿⣿⠟⠛⠉⣩⣍⠉⠛⠻⣿⣿⣿⣿⣿⣿ ⣿⣿⣿⣿⠋⠀⠀⣠⣾⣿⠟⠁⠀⠀⠀⠙⣿⣿⣿⣿ ⣿⣿⣿⠁⠀⠀⢾⣿⣟⠁⠀⣠⣾⣷⣄⠀⠘⣿⣿⣿ ⣿⣿⡇⣠⣦⡀⠀⠙⢿⣷⣾⡿⠋⠻⣿⣷⣄⢸⣿⣿ ⣿⣿⡇⠙⢿⣿⣦⣠⣾⡿⢿⣷⣄⠀⠈⠻⠋⢸⣿⣿ ⣿⣿⣿⡀⠀⠙⢿⡿⠋⠀⢀⣽⣿⡷⠀⠀⢠⣿⣿⣿ ⣿⣿⣿⣿⣄⠀⠀⠀⢀⣴⣿⡿⠋⠀⠀⣠⣿⣿⣿⣿ ⣿⣿⣿⣿⣿⣿⣦⣤⣀⣙⣋⣀⣤⣴⣿⣿⣿⣿⣿⣿ ⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆ܻܻࣩࣩࣩࣩࣩࣩ࣯ࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩ݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅ࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤ์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋ືືືືືືືືືືືືືືືືືືືືືືືຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶ᪴᪴᪴᪴᪴᪴᪴᪴᪴᪴᪴᪴᪴᪴᪴ ︎︎

︎︎︎︎

︎︎ * ҈҈҈҉҉҉҉҈҈҈҈҈҉҉҉҉҈҈҈҉҉҉҈҈҈҉҉҉҈҈҈҈҉҉҉҉҉҉҉҉҉҉҉҉҉҉҉҉҉҉҉҉҉҉҉҉҉҉҉҉҉҉҉҈҈҈҈҈҈҈̫̫̫̫̫̫̫̫̫̫̫̫̫̫̫̫̫̫̫̫̫̫̫̫̫̫̫̫̫̫̫̫̫̫̼̼̼̼̼̽̽̽̽̽̽̽̽̽̽̽̽̽̽̽̽̽̽̽̽̽̽̽̽̽̽̽̽̽͊͊͊͊͋͋͋͋͋͋͋͋͋͋͋͋͋͋͋͋͋͋͋͋͊͊͊͊͊͊͊͊͋͋͋͋͋͋͋͊͊͊̈́̈́̈́̈́̈́̈́͊͊͊͊̈́̈́͊͊̈́̈́̈́͊͊̈́̈́͋͋͋͋͋͋͋͢͢͢͢͢͢͢͢͢͢͢͢͢͢͢͢͢͢͢͢͢͢͢͢͢͢͢͢͢͢͢͢͢͢͢͠͠͠͠͠͠͠͠͠͠͠͠͠͠͠͠͠͠͠͠͠͠͠͠͠͠͠҉҉҉҉҈҈ًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًًٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍٍّّّّّّّّّّّّܑܑܑܑܑܑܑܑܑܑܑܑܑܑܑܑܑܑܑܑܑܑܑ๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊ܻܻܻܻܻܻܻܻܻܻ݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆ܻܻࣩࣩࣩࣩࣩࣩ࣯ࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩ֟֟֟֟֟֟֟֟֟֟֟֟֟֓֓֓֓֓֓֓֓֓֓֓֓֒֒֒֒֒֒֒֒֒֒֒֒֒֒֒֒֒֒֒֓֓֓֓֓֓֓֓֒֒֒֘֘֘֘֘֘֘֗֗֗֗֗֗֗֗֗֗֗֗֗֗֗ؖؖؖؖؖؖؖؖؖؖؖؖؖؖؖؖؖؖؖؖؖؖؖؖؖؖؖؖؖؖؖؖؖؖؖؖؖؖؖؕؕؕؕؕؕؕؕؕؕؕؖؖؖؖؖؖؖؖؖؖؖٞٞٞٞٞٞٞٞٞٞٞٞٞٞٞٞٞٞٞٞٞٞٞٞٞ٘ۛۛۛۛۛۛۛۛۛۛۛۛۛۛۛۛۛۛۛۛۛۛۛۛۛۛۛۛۛۛۛۛۛۛۛۛۛۛۛۛۛܺܺܺܺܺܺܺܺ݉݉݉݉݊݊݊݊݊݊݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅ࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤ์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋ືືືືືືືືືືືືືືືືືືືືືືືຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶ᪴᪴᪴᪴᪴᪴᪴᪴᪴᪴᪴᪴᪴᪴᪴*
๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆ܻܻࣩࣩࣩࣩࣩࣩ࣯ࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩ݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅ࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤ์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋ືືືືືືືືືືືືືືືືືືືືືືືຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶ᪴᪴᪴᪴᪴᪴᪴᪴᪴᪴᪴᪴᪴᪴᪴* ҈҈҈҉҉҉҉҈҈҈҈҈҉҉҉҉҈҈҈҉҉҉҈҈҈҉҉҉҈҈҈҈҉҉҉҉҉҉҉҉҉҉҉҉҉҉҉҉҉҉҉҉҉҉҉҉҉҉҉҉҉҉҉҈҈҈҈҈҈
๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆ܻܻࣩࣩࣩࣩࣩࣩ࣯ࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩ݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅ࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤ์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋๋ືືືືືືືືືືືືືືືືືືືືືືືຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶຶ
๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊๊݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆݆ܻܻࣩࣩࣩࣩࣩࣩ࣯ࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩࣩ݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅݅ࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣧࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣨࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤࣤ์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์์

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

решить или 11 Если сможете решите оба
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

АлександровнаВладлен243
Назаров588
Galinova2911
Radikovnanikolaeva
Павловна897
vardartem876
djevgen
Sknyajina5
heodbxbbshe
Tselyaritskaya Yurevich
armynis8
gabramova
Исакова-Александрович511
Mukhlaev-Olga
annakorolkova79