Нам известны все 3 измерения прямоугольного параллелепипеда, значит мы можем найти его диагональ.
a, b, c - его различные рёбра; d - его диагональ.
ответ: 14 см.
Если 3√3 выражен в см.
Доказательство этой формулы:
Все грани прямоугольного параллелепипеда прямоугольники, это определение. Поэтому квадрат диагонали основания будет равен a²+b². Рассмотрим плоскость в которой есть диагональ параллелепипеда и наша диагональ прямоугольника из основания. Это плоскость образует сечение, которое является прямоугольником т.к. боковые рёбра перпендикулярны основанию, а наша диагональ прямоугольника лежит именно в основании. Так вот одна сторона прямоугольника это боковое ребро, а вторая это диагональ, которую мы искали вначале. При этом диагональ этого прямоугольника и является диагональю параллелепипеда, то есть d²=c²+(a²+b²), т.к. это прямоугольник. Что и требовалось доказать.
Смотри на рисунок, для понятности.
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
Объяснение:
Рисунок прилагается.
Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.
Найти катеты AC и BC.
Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.
Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.
h² = a₁*b₁ = 2 * 18 = 36; h = 6
⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.
Из прямоугольного ΔACH по теореме Пифагора:
a² = h² + a₁² = 6² + 2² = 36 + 4 = 40; a = √40 = 2√10
Катет AC = 2√10 см/
Из прямоугольного ΔBCH по теореме Пифагора:
b² = h² + b₁² = 6² + 18² = 36 + 324 = 360; b = √360 = 6√10
Катет BC = 6√10 см.
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
Поделитесь своими знаниями, ответьте на вопрос:
Найдите х по рисунку.А) 92C) 96В) 90D) 98
рисунок где