Все ребра треугольной призмы равны. Найдите площадь основания призмы, если площадь ее полной поверхности равна 8+16√ 3
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности. Пусть ребро призмы равно а. Грани - квадраты, их 3. S бок=3а² S двух осн.=( 2 а²√3):4=( а²√3):2 По условию 3а²+(а²√3):2=8+16√3 Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3) а²=16(1+2√3):(6+√3) Подставим значение а² в формулу площади правильного треугольника: S=[16*(1+2√3):(6+√3)]*√3:4 S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
Олегович Паутова
27.12.2022
1. У ромба АВСD все стороны равны. Значит каждая сторона = 60 : 4 = 15(см) Меньшая диагональ ромба AC делит его на 2 равносторонних треугольника, т.к. АВ=ВС. Угол В=60 градусов, значит углы при основании треугольника АВС =60 градусов каждый (180-60) : 2 =60. Значит треугольник АВС - равносторонний. От сюда следует, что АС=АВ=ВС=15 см 2. В параллелограмме АВСD биссектриса АЕ делит ВС на отрезки ВЕ=7см и ЕС=5см. BC=AD=ВЕ+ЕС=7+5=12(cm) ВС=AD=12см Треугольник ABC - равнобедренный, т.к. угол ЕАD=углу АЕВ (накрест лежащие углы при параллельных прямых), а угол ВАЕ = углу АЕВ. Значит АВ=7см и DC=7см. Периметр ABCD=12+12+7+7= 38(см) 3. Треугольник ABC - равнобедренный, т.к. угол BAC = углу АМВ (накрест лежащие углы при параллельных прямых). Значит АВ=ВМ, АВ=СD=9дм, ВМ=9 дм. АD=BC=ВМ+МС=9+4=13 дм AD=13 дм
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
По рисункам 17 и 18 укажите, какие из векторов: а)равные б)противоположные в)имеют равные длины.