Пусть острый угол параллелограмма равен х°, тогда тупой угол параллелограма равен 180-х°, а угол между высотами параллелограмма (180-х°):3= 60 -х/3.Проведем из вершины тупого угла высоты к сторонам параллелограмма( одна - к большей стороне, другая - к продолжению меньшей). Получаем два прямоугольный треугольника с острыми углами х° и 90-х°.Теперь при вершине тупого угла образовались три угла, составим уравнение:90-х° + 90-х°+60 -х/3= 180 -х-х-х/3 = -604/3 х= 60х=45⁰Значит, острый угол параллелограмма равен 45⁰, а тупой 135⁰ответ: два острых угла по 45⁰, и два тупых угла по 135⁰.
Anastasiamoscow80
05.05.2021
Формула радиуса описанной окружности треугольника: R=abc:4S Площадь треугольника по формуле Герона равна корню из произведения полупериметра (p) на разности полупериметра треугольника и каждой из его сторон (a, b, c): S=√{p(p−a)(p−b)(p−c)} Не буду приводить вычисления, их несложно сделать самостоятельно. По формуле Герона найдем площадь треугольника - она равна 1680 см² Радиус, найденный по приведенной выше формуле радиуса описанной окружности, равен 65 см. Расстояние от центра описанной окружности до каждой из вершин треугольника одинаково, является проекцией каждого ребра и равно радиусу этой окружности. Высота пирамиды и проекция ребер - катеты прямоугольных треугольников и одинаковы для каждого ребра, которые в этих треугольниках являются гипотенузой. По т. Пифагора длину ребра найти несложно. В данном случае АВ=АД=АС =√(АН²+ВН²)=√(72²+65²)=97 см