Если катет и противолежащий острый угол одного прямоугольного треугольника соответственно равны катету и противолежащему острому углу другого прямоугольного треугольника, то такие треугольники равны.
В прямоугольном треугольнике катету противолежит острый угол ( прямой противолежит гипотенузе) и сумма острых углов 180°-90°=90°.
Поэтому: если противолежащий катету острый угол одного прямоугольного треугольника равен противолежащем острому углу другого, то прилежащие к равным катетам острые углы также равны
К равным катетам этих треугольников прилежат равные углы: прямой ( по условию) и найденный острый.
Такие прямоугольные треугольники равны по 2-му признаку равенства треугольников, т.е. по стороне и прилежащим к ней углам.
Поделитесь своими знаниями, ответьте на вопрос:
Просклоняйте по падежам порядковые и количественные, числительное ПОЛТОРАСТА
Диагонали ромба перпендикулярны и делятся точкой пересечения пополам, значит, получаем 4 равных прямоугольных треугольника, у которых катеты - это половинки диагоналей, а гипотенуза - сторона ромба.
Т.к. одна из диагоналей ромба равна 12 см, то ее половинка равна 6 см, тогда по теореме Пифагора второй катет (равен половине второй диагонали) равен: √(10² - 6²) = √(100 - 36) = √64 = 8 (см). Следовательно, вторая диагональ равна 2 · 8 = 16 (см)
ответ: 16 см.