Правильная 4-х угольная пирамида — это многогранник, у которого одна грань — основание пирамиды — квадрат, а остальные — боковые грани — равные треугольники с общей вершиной. Высота опускается в центр пересечения диагоналей квадрата основания из вершины.
S(полн)=S(осн)+S(бок), S(осн)=АВ² , S(бок)=1/2 Р(осн)*а, где а-апофема.
S(осн)=24² , S(осн)=576 дц².
Пусть МК⊥ВС, тогда ОК⊥ВС , по т. о 3-х перпендикулярах. ОК=12 дц.
ΔОМК-прямоугольный , по т. Пифагора МК²=ОК²+МО² , МК=20 дц.
S(бок)=1/2 *(4*24)*20=960(дц²).
S(полн)=576+960=1536 (дц²).
На швы и обрезки ещё дополнительно тратится 25% ⇒
(1536*25):100=384(дц²) тратиться на швы и обрезки.
1536+384=1920 (дц²)
Zelinskaya-Andrei
21.06.2021
Дано: АВСД - ромб угол А = 30 градусов ВМ и ВК - перпендикуляры ВМ = 5 см Найти : Р = АВСД = ? Решение : У нас образовался прямоугольный треугольник - ВАМ угол А = 30 градусов угол М = 90 градусов ( т. к. проведен перпендикуляр ВМ ) отсюда следует, что угол В = 60 градусов (так как сумма углов треугольника равна 180 градусов 180 - 120 = 60 градусов ) , а ВМ = 5 см ( по условию) Вм катет, лежащий против угла 30 градусов ( мы знаем теорему , что угол лежащий против угла 30 градусов равен половине гипотенузы ) А гипотенузой является сторона АВ значит она равна 10 см ( 5см + 5см = 10 см) теперь мы находи Р = ромба = ? Р = АВСД = 10 см * 4 ( стороны ) = 40 см ( так как все стороны ромба равны мы умножаем на четыре) , отсюда следует что Р = АВСД = 40 см.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найдите площадь равнобедренного треугольника с основанием см и углом при вершине 120 градусов
Объяснение:
1)
Правильная 4-х угольная пирамида — это многогранник, у которого одна грань — основание пирамиды — квадрат, а остальные — боковые грани — равные треугольники с общей вершиной. Высота опускается в центр пересечения диагоналей квадрата основания из вершины.
S(полн)=S(осн)+S(бок), S(осн)=АВ² , S(бок)=1/2 Р(осн)*а, где а-апофема.
S(осн)=24² , S(осн)=576 дц².
Пусть МК⊥ВС, тогда ОК⊥ВС , по т. о 3-х перпендикулярах. ОК=12 дц.
ΔОМК-прямоугольный , по т. Пифагора МК²=ОК²+МО² , МК=20 дц.
S(бок)=1/2 *(4*24)*20=960(дц²).
S(полн)=576+960=1536 (дц²).
На швы и обрезки ещё дополнительно тратится 25% ⇒
(1536*25):100=384(дц²) тратиться на швы и обрезки.
1536+384=1920 (дц²)