Параллельные плоскости α и β пересекают стороны угла ОА угла АОВ в точках А1, А2, а сторону ОВ – в точках В1, В2 соответственно, Найдите А1В1, если ОВ1=12см, ОВ2=18 см, А2В2=54 см.
Определения: Правильный октаэдр — многогранник, гранями которого являются восемь правильных треугольников.
Плоскости параллельны друг другу, если две пересекающиеся прямые, лежащие в одной плоскости, соответственно параллельны двум пересекающимся прямым, лежащим в другой плоскости.
Проведем секущую плоскость через противоположные вершины Е и F октаэдра и середины противоположных сторон G и H основания АВСD (квадрата). Эта плоскость пройдет через высоты EG, EH, FG и FH боковых граней ADE, BCE, ADF и BCF(правильные треугольники) соответственно. Они равны друг другу и лежат в одной плоскости, следовательно сечение FGEH - ромб по определению.
В ромбе противоположные стороны GE и FH параллельны. Параллельны и стороны основания октаэдра AD и ВС. Прямые AD и EG, BC и FH - пересекающиеся прямые. Они лежат в плоскостях ADE и BCF соответственно. Следовательно, плоскости ADE и BCF параллельны по приведенному выше определению. Аналогично и для других противоположных граней. Что и требовалось доказать.
Galliardt Sergeevna1284
22.09.2022
Сечение будет определено 4 точками на рёбрах параллелепипеда. четвёртая точка е будет лежать на ребре а1в1, причем а1е = ев1 сечение определено сторонами: fd. dc1. c1e. ef по т. пифагора fd^2 = af^2 + ad^2 = 2^2 + 2^2 = 8 fd = 2√2 dc1^2 = dc^2 + cc1^2 = 2^2 + 4^2 = 20 dc1 = 2√5 а1е = ев1 так как угол сечения плоскости таков, что проходит через диагональ боковой стороны dd1c1c, а значит с середины ребра aa1 он попадает на середину a1b1 c1e^2 = b1c1^2 + eb1^2 = 2^2 + 1 = 5 c1e = √5 ef^2 = a1e^2 + a1f^2 = 1 + 1 = 2 ef = √2 p fdc1e = fd+ dc1+ c1e+ ef= 2√2 + 2√5 + √5 + √2 = 3√2+3√5 = 3(√2+√5)
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Параллельные плоскости α и β пересекают стороны угла ОА угла АОВ в точках А1, А2, а сторону ОВ – в точках В1, В2 соответственно, Найдите А1В1, если ОВ1=12см, ОВ2=18 см, А2В2=54 см.
Определения: Правильный октаэдр — многогранник, гранями которого являются восемь правильных треугольников.
Плоскости параллельны друг другу, если две пересекающиеся прямые, лежащие в одной плоскости, соответственно параллельны двум пересекающимся прямым, лежащим в другой плоскости.
Проведем секущую плоскость через противоположные вершины Е и F октаэдра и середины противоположных сторон G и H основания АВСD (квадрата). Эта плоскость пройдет через высоты EG, EH, FG и FH боковых граней ADE, BCE, ADF и BCF(правильные треугольники) соответственно. Они равны друг другу и лежат в одной плоскости, следовательно сечение FGEH - ромб по определению.
В ромбе противоположные стороны GE и FH параллельны. Параллельны и стороны основания октаэдра AD и ВС. Прямые AD и EG, BC и FH - пересекающиеся прямые. Они лежат в плоскостях ADE и BCF соответственно. Следовательно, плоскости ADE и BCF параллельны по приведенному выше определению. Аналогично и для других противоположных граней. Что и требовалось доказать.