* * * * * * * Второй ∠C =180° -(∠A+∠B) =180° -(30°+105°) =45°. Проведем высоту BH⊥AC (∠AHB=90°) ⇒ Прямоугольный треугольник BHC равнобедренный CH =BH ,т.к. ∠C =45°. По теореме Пифагора из ΔBHC: BC =√ (BH² +CH²) =√(2BH²) =BH√2 . Но из ΔABH BH=AB/2 =8(как катет против угла ∠A =30°). Значит BC =BH√2 =8√2.
olimp201325
12.12.2022
Вот ответ ко второй задаче : Углы 1 и 2 равны, т к АК биссектриса, углы 1 и 3 равны как накрест лежащие между параллельными прямыми ВС и AD и секущей АM . Значит углы 2 и 3 равны и треугольник АВM равнобедренный. AB = CD = 5 см. BC = BK + KC = 13 см, BC = AD = 13 см. P = 2 * (5+13) = 36 см. ответ : 36 см Вот ответ к четвертой : Если меньшая диагональ 12 см, а один из углов 60 градусов(меньший), то эта диагональ делит ромб на 2 равносторонних треугольника со стороной 12(а треугольники равносторонние,так как изначально они равнобедреные(у ромба все стороны равны)а угол 60 градусов,значит 2 других тоже по 60 градусов,а отсюда следует,что треугольники равносторонние со стороной 12 см)стороны ромба равны значит все стороны 12 см, а периметр равен сумме длин всех сторон:P=12*4=48см
ответ: P=48 см
вот ответ к первой задаче : так как сумма двух соседних углов ромба равна 180⁰. По условию задачи два угла ромба относятся как 8:10 ,значит, если один из углов 8х, то другой 10х сумма двух соседних углов ромба равна 180⁰.составим уравнение 8х + 10х = 180 18х = 180 х =10 коэффициент ТОГДА меньший угол равен: 8х = 8*10⁰ = 80⁰ ТОГДА больший угол 10х=10*10=100° град
1) BC -?
2) (меньшая сторона) -?
1) AB/sin∠C =BC/sinA = AC/sin∠B = 2R (теорема синусов).
∠C =180° -(∠A +∠B )= 180° -(30° +105°) =45°.
16/sin45° =BC/sin30°⇒
BC =15*(sin30°/sin45°) =16*(1/2) / (1/√2) =(16√2)/2 =8√2≈11,28 (см).
---
2) меньшая сторона та, которая лежит против меньшего угла ,
эта сторона BC(лежит против меньшего угла ∠A=30°).
длину AC не требуется , но :
AC /sin∠B = AB/sin∠C ⇒AC =AB*sin(∠B)/(sin∠C)=
16* sin105°/(1/√2) =16√2sin105°=16√2*√2(√3 +1)/4 =8(√3 +1) .
sin105° =sin(180°-75°) =sin75°=sin(45°+30°) =...
или
sin105° =sin(60°+45°) =sin60°*cos45°+cos60°*sin45°=
(√3/2)*(√2/2)+(1/2)*(√2/2) =√2(√3 +1)/4.
* * * * * * * Второй
∠C =180° -(∠A+∠B) =180° -(30°+105°) =45°.
Проведем высоту BH⊥AC (∠AHB=90°) ⇒ Прямоугольный треугольник BHC равнобедренный CH =BH ,т.к. ∠C =45°.
По теореме Пифагора из ΔBHC:
BC =√ (BH² +CH²) =√(2BH²) =BH√2 . Но из ΔABH BH=AB/2 =8(как катет против угла
∠A =30°). Значит BC =BH√2 =8√2.