bergamon
?>

Найдите равные треугольники​

Геометрия

Ответы

zloshop9
Теорема пифагора: квадрат гипотенузы равен квадрату катетов. 1)с^2= 8^2+1^2=64+1=65 с=корень из 65 2) 12^2=10^2+b^2 144=100+b^2 b^2= 44 b= 2 корень из 11 3)диагонали при пересечении делятся пополам. получается треугольник с катетами 6 см и 8 см, а сторона ромба это гипотенуза треугольника. с^2=36+64 с^2=100. с=10 см. сторона ромба =10 см 4) диагональ прямоугольника образует со сторонами прямоугольный треугольник. с^2=36+49. с^2=85. с =корень из 85 5) в равнобедренном треугонике боковые стороны равны. s= 11×11×10=1210
svetavalera

1. S =  25,5 дм².

2. Cosα = 0,96.

Объяснение:

1. Построим сечение. Для этого проведем из точки О (пересечение диагоналей основания пирамиды - прямоугольника) луч, параллельно боковому ребру AS и на пересечении этого луча с боковым ребром CS обозначим точку Р.  Соединив точки В и D с точкой Р, получим треугольник BPD -- сечение пирамиды, проходящее через диагональ BD параллельно боковому ребру AS (так как луч ОР лежит в плоскости сечения и параллелен ребру AS).

Диагонали прямоугольника равны и точкой пересечения делятся пополам.

По Пифагору АС = BD = √(6²+8²) = 10 дм.  ОС = АО = BO = OD = 5 дм.

Треугольники ASC и OPC подобны (OP║AS) c коэффициентом подобия k=OC/AC = 1/2. =>  PC = SC/2.

Опустим из точки Р перпендикуляр РН.

Треугольники OSC и HPC подобны (PH║OS)  c коэффициентом подобия k=PC/SC = 1/2.  =>  PH  = SO/2,  НС = ОС/2.

Проведем из точки С перпендикуляр СТ к диагонали BD.  Это высота прямоугольного треугольника BCD, проведенная из прямого угла и по ее свойству CТ = BC*CD/BD =  8*6/10 = 4,8дм.

Проведем из точки Н прямую HQ, параллельно СТ. Тогда HQ⊥BD и по теореме о трех перпендикулярах PQ⊥BD и является высотой треугольника BPD.

Треугольники OCТ и OHQ подобны (HQ║CT) c коэффициентом подобия k=PC/SC = 1/2.  =>  HQ  = CT/2 = 4,8/2 = 2,4 дм.

По Пифагору PQ = √(HQ²+PH²) = √(2,4²+4,5²) = √26,01 = 5,1 дм.

Площадь сечения равна S = (1/2)*10*5,1 = 25,5 дм².

2. Определение: Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости и не имеют общих точек. АВ1 и СD1 скрещивающиеся прямые по определению.

Угол между скрещивающимися прямыми - это угол между любыми двумя пересекающимися прямыми, которые параллельны исходным скрещивающимся.

Проведем диагональ А1В грани АА1В1В. A1B параллельна СD1 как соответствующие диагонали противоположных граней параллелепипеда. АВ1 и А1В - скрещивающиеся прямые. Следовательно, искомый угол - это угол между прямыми АВ1 и А1В. Боковая грань АА1В1В - прямоугольникб диагонали которого пересекаются в точке О и этой точкой делятся пополам. Диагонали равны между собой и по Пифагору равны √(АА1²+АВ²) = √(6²+8²) = 10 ед. Тогда АО = А1О = 5 ед.  АА1 = 6 ед. (дано).

Найдем косинус этого угла по теореме косинусов:

Cosα = (AO²+A1O² - AA1²)/(2*AO*AO) = (5²+5²-6²)/(2*25) = 14/50 = 0,28.

Тогда по известной формуле

Sinα = √(1 - Cos²α) =  √(0,9216) = 0,96.


Основанием пирамиды, высота которой равна 9 дм, а боковые ребра равны друг другу, является прямоугол

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите равные треугольники​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

elmira01048775
Verakravez8790
kv135549
bal4shovser16
ocik1632933
vdm4275
Tarapovskaya
Katkova
k-serga1
dfyurst708
zubov-073620
aureole6452
proh-dorohova5244
elenaneretina
Yarovitsin