familumid
?>

Дан параллелограмм. как найти его площадь, если известна площадь одного из треугольников, образованных пересечением двух диагоналей? вот сама . cdek - параллелограмм, о - точка пересечения диагоналей. найдитеплощадь параллелограмма, если площадь треугольника кое будет равна 13, 5 дм^2

Геометрия

Ответы

gorbelena1971

zerckaln
Во первых, нам известно, что ромб - частный случай параллелограмма. рисуем параллелограмм и из точки b отпускаем серединный перпендикуляр к стороне ad.(параллелограмм abcd). отпускаем из точки b высоту bh, и получаем треугольник. ad = 8 см. периметр ромба = 4(т.к. все стороны у ромба равны)  · 8 = 32 см.    hd = ad/2 = 4. по теореме пифагора узнаём высоту   8² = 4² + x²  64 = 16 + x²  x² = 48 x = √48 т.к. ромб это частный случай параллелограмма, то для него справедлива формула s = ah  sромба =  √48  · 8 =  √ 48 · √64 = √3072 = 32√3 см²
asskokov
1. доказать, что диагонали делят параллелограмм на 4 равновеликих треугольника. доказательство. диагонали параллелограмма точкой пересечения делятся пополам. пусть половина первой диагонали = а, а половина второй диагонали = b. значит площадь каждого из получившихся треугольников равна (1/2)a*b*sinα - формула, где α - угол между диагоналями. углы, образованные при пересечении диагоналей - смежные и равны α и 180-α. поскольку sin(180-α) = sinα (формула), то площади всех 4 треугольников равны. что и требовалось доказать. 2. найти площадь равнобокой трапеции с основаниями 15 см и 39 см, в которой диагональ перпендикулярна к боковой стороне. решение. поскольку высота из тупого угла равнобедренной трапеции делит основание на отрезки, меньший из которых равен полуразности оснований = 12см (свойство), а высота нашей трапеции - высота прямоугольного треугольника из прямого угла, то эта высота по ее свойствам равна h=√((39-12)*12)=18см. тогда площадь трапеции равна по формуле s=(ad+bc)*h/2 : s=(39+15)*18/2=486см². 3. соответствующие стороны двух подобных треугольников относятся как 2 : 3. площадь второго треугольника равна 81 см2. найдите площадь первого треугольника. площади подобных треугольников относятся как квадрат коэффициента подобия. значит s1=(2/3)²*s2. s1=(4/9)*81=36см². 4. основания трапеции относятся как 2: 3, а ее площадь равна 50 см2. найти площади: а) двух треугольников, на которые данная трапеция делится диагональю б) четырех треугольников, на которые данная трапеция делится диагоналями. решение. диагонали трапеции делят ее на 4 треугольника, из которых два, прилежащих к основаниям, подобны, а два прилежащих к боковым сторонам, равновелики (равны по площади). а). sabcd=(2x+3x)*h/2 =50см² (площадь трапеции дана).  => 5xh=100см²  и  xh=20см². sabd=sacd=(1/2)*3xh = 30см². sabo=scod= sabcd-sabd= 50-30=20см². ответ: 30см² и 20см². б) sboc=(1/2)*2x*(2/5)h=0,4*xh =0,4*20=8см². saod=(1/2)*3x*(3/5)h=0,9*xh =0,9*20=18см². saob=saod=sabd-scod=(1/2)*3xh - 0,9*xh = 06xh =12см². ответ: sboc=8см²,saod=18см², saob=saod=12см².

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Дан параллелограмм. как найти его площадь, если известна площадь одного из треугольников, образованных пересечением двух диагоналей? вот сама . cdek - параллелограмм, о - точка пересечения диагоналей. найдитеплощадь параллелограмма, если площадь треугольника кое будет равна 13, 5 дм^2
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

karpachevamarina
xsmall1
departed744
Korikm
iraimironova
Anastasiamoscow80
egornostaeva
ele922009226536
РостиславовичЮлия1147
market-line5260
simplexsol
Maly01984489
Равиль_Евгеньевич1808
Nikolaevich
anyakru94