Дан тетраэдр dabc. м середина ребра AD построить сечение тетраэдра плоскостью проходящей через точку М и параллельно грани ABC найти периметр сечения если ребро тетраэдра равно а
дві прямі в просторі називаються паралельними, якщо вони лежать в одній площині й не перетинаються. прямі, які не лежать в одній площині, називаються мимобіжними. зверніть увагу: «не лежать в одній площині» і «лежать у різних площинах» — це різні твердження. наприклад, паралельні прямі a і b лежать у різних площинах і (див. рисунок), але через них можна провести площину, яка міститиме a і b водночас. image8756image 167 fmt.jpeg
для мимобіжних прямих (див. рисунок) не існує такої площини, у якій вони лежали б водночас. 1.jpeg
можна довести, що всі прямі, які перетинають дві паралельні прямі, лежать в одній площині. теорема. через точку, яка не лежить на даній прямій, можна провести пряму, паралельну даній, і тільки одну.
ivstigres65
17.05.2023
Площадь треугольника равна половине произведения его высоты на сторону, к которой проведена. Сторона, к которой проведена высота, равна 3+12=15 м. Высоту нужно найти. Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой;⇒ h²=3*12=36 h=√36=6 (м) Ѕ=h*a:2 S=6*15:2=45 м² Периметр - сумма всех сторон многоугольника. В данном случае сумма длин катетов и гипотенузы: Р=a+b+c а=√(3*15)=3√5 м b=√(12*15)=6√5 м Р=15+9√5 (м) Катеты можно найти и по т. Пифагора, затем найти площадь половиной их произведения.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Дан тетраэдр dabc. м середина ребра AD построить сечение тетраэдра плоскостью проходящей через точку М и параллельно грани ABC найти периметр сечения если ребро тетраэдра равно а
ответ:
объяснение:
дві прямі в просторі називаються паралельними, якщо вони лежать в одній площині й не перетинаються. прямі, які не лежать в одній площині, називаються мимобіжними. зверніть увагу: «не лежать в одній площині» і «лежать у різних площинах» — це різні твердження. наприклад, паралельні прямі a і b лежать у різних площинах і (див. рисунок), але через них можна провести площину, яка міститиме a і b водночас. image8756image 167 fmt.jpeg
для мимобіжних прямих (див. рисунок) не існує такої площини, у якій вони лежали б водночас. 1.jpeg
можна довести, що всі прямі, які перетинають дві паралельні прямі, лежать в одній площині. теорема. через точку, яка не лежить на даній прямій, можна провести пряму, паралельну даній, і тільки одну.