Обозначим буквами вершины треугольника АВС (начиная с нижней левой вершины), а точку пересечения прямой (показан голубым цветом) со стороной АС за К.
Объяснение:
Сначала мы должны опустить высоту ВН в треугольнике АВС, которая также является высотами треугольников АВК и ВКС.
1) Высота в равнобедренном треугольнике является медианой и биссектрисой
следовательно ->
-> АН=НС=(21+11)÷2=16
2) Рассмотрим треугольник ВНК:
НК=НС-КС=16-11=5
По т. Пифагора:
ВН^2=169-25
ВН=12
3)Можно рассмотреть любой из треугольников АВН и ВНС
По т. Пифагора:
х^2=144+256
х^2=400
х=20
ОТВЕТ: х=20
Поделитесь своими знаниями, ответьте на вопрос:
77. Ромбтың диагоналі оның бір қабырғасымен 40° бұрыш жасайды. Ромбтың бұрыштарын табыңдар.
Объяснение:
Вообщем смысл в следующем.
Основная формула объёма цилиндра:
V=πr²*h; πr² - площадь основания цилиндра, h - высота
V=πr²*h , V=π * OB² * OO₁
Треугольник AOB - равнобедренный, так OA=OB как радиусы основания.
OH - это расстояние от центра O до хорды АВ и является высотой-медианой равнобедренного треугольника, и делит сторону АВ пополам под прямым углом.
Дальше, зная высоту ОН=d и НВ (= 1/2 длины хорды АВ) :
(1) по теореме Пифагора (с²=a²+b²) можно найти сторону ОВ как гипотенузу треугольника НОВ:
ОВ²=d²+HB²; ОВ = √(d²+HB²)
(2) Либо через sin угла α (который ∠АОВ), не зря же нам его величину α дали.
sinα - это отношение противолежащего этому углу катета к гипотенузе
[не забываем, что это ∠АОВ = α, а ∠АОВ = α/2 или =1/2α
то есть sin(1/2α) = НВ/ОВ, отсюда чтобы найти радиус ОВ = НВ / (1/2α).
Высота цилиндра и радиус основания образуют другой прямоугольный треугольник O₁ВО, в котором ∠O - прямой (+90°), ∠В = φ
Зная расстояние от верхнего центра до конца хорды O₁В и радиус ОВ (=r), можно найти высоту O₁О, опять же либо по теореме Пифагора, либо через косинус данного угла ∠O₁ОО = φ.
cosφ - отношение прилежащего катета к гипотенузе, то есть
cosφ = O₁О / O₁В, отсюда высота O₁О = O₁В * cosφ
Таким образом, вычислив радиус ОВ основания цилиндра и высоту O₁О цилиндра, сможем найти его объём по формуле: V=πr²*h