В треугольнике АВС известны длины сторон АВ =8 и АС = 64.
Точка О центр окружности, описанной около треугольника АВС. Прямая ВD перпендикулярная прямой АО , пересекает сторону АС в точке D. Найдите СD.
–––––––––––––––––
Продлим ВD до пересечения с окружностью в точке М.
Хорда МВ перпендикулярна радиусу ОА ( по условию) и при пересечении с ним делится пополам ( свойство).
Тогда радиус ОА делит угол ВОМ пополам. Дуги АМ и АВ, на которые опираются равные центральные углы МОА и ВОА, также равны.
Отсюда следует равенство углов АВМ и ВСА - опираются на равные дуги.
В треугольниках АВС и АВD угол ВАС общий, ∠АВD=∠ВСА ⇒
∆ АВС ~ ∆ АВD по 1-му признаку подобия. Из подобия следует отношение:
АВ:АС=АD:АВ
АВ²=АD•AC
64=AD•64⇒ AD=1
CD=64-1=63 (ед. длины)
Поделитесь своими знаниями, ответьте на вопрос:
Угол HCD развёрнутый. CG — биссектриса угла ECD, CE — биссектриса угла FCD. Вычисли углы DCG, FCD и HCF, если ∢ECD=56°. a) ∢DCG= b) ∢FCD= c) ∢HCF=
ответ на фото
Объяснение: