нехай х дорівнює єдиній частині кута, то номер4=5х, а номер6=4х (за вл. внутр. одностор. кутів) маємо рівняння 4х+5х=180°; 9х=180; х=20°; номер4=100°; номер6=80°
номер3=номеру6=80°(за вл. внутр. різностор.)
номер4=номеру5=100°(за вл. внутр. різностор.)
номер4=номеру1=100°(за вл. вертикальних кутів)
номер3=номеру2=80°(за вл. вертикальних кутів)
номер5=номеру8=100°(за вл. вертикальних кутів)
номер6=номеру7=80°(за вл. вертикальних кутів)
vlrkinn
20.05.2023
Дано: ABCD - ромб ; ∠A =60° ; MA ⊥ ( ABCD ) ; MA =AB .
Длину стороны ромба обозначаем через a : AB =AD =BC =CD =a; точка пересечения диагоналей BD и AC → O. ΔBAD - равносторонний (AB =AD и ∠A =60° ) ⇒ BD = a ; AC =2AO =a√3 . --- MA ⊥ ( ABCD ) ⇒ MA ⊥ AB и MA ⊥ AD . ΔMAB = ΔMAD и т.к. MA =AB =a ⇒ MB =MD =√(a² +a²) =a√2 , Следовательно ΔMCD = ΔMCB ( по трем сторонам _ MC -общее) и из ΔMAC : MC =√(MA²+ AC²) = √(a²+ 3a²) =2a . --- MC линия пересечения плоскостей MCD и MCB . Проведем в треугольнике ΔMCD высоту DK: DK ⊥ MC (K- основание высоты , K ∈ [ MC] ; MC² > MB² +DC² ⇒ ∠ MDC _тупой ) , точка K соединяем с вершиной B , очевидно BK ⊥ MC из ΔMCD = ΔMCB . Таким образом ∠DKB = α искомый угол . По теореме косинусов из ΔMCD : MD² = MC² +CD² - 2MC*CD*cos∠MCD ⇔ 2a² =4a² +a² -2*2a*acos∠MCD⇒ cos∠MCD =3/4 ⇒ sin∠MCD = √(1 -cos²∠MCD) =√(1 -(3/4)² ) =(√7) / 4 KD =CD*sin∠MCD = (a√7) / 4 (из ΔKCD ). --- из ΔDKO : sin (α/2 ) = DO / DK =(a/2) / (a√7) / 4 =2 /√7. α/2 = arcsin (2 /√7) ⇒ α =2arcsin (2 /√7).
ответ:100°;80°;100°;80°;100°;80°;100°;80°;
Объяснение: Пронумеруемо кути
нехай х дорівнює єдиній частині кута, то номер4=5х, а номер6=4х (за вл. внутр. одностор. кутів) маємо рівняння 4х+5х=180°; 9х=180; х=20°; номер4=100°; номер6=80°
номер3=номеру6=80°(за вл. внутр. різностор.)
номер4=номеру5=100°(за вл. внутр. різностор.)
номер4=номеру1=100°(за вл. вертикальних кутів)
номер3=номеру2=80°(за вл. вертикальних кутів)
номер5=номеру8=100°(за вл. вертикальних кутів)
номер6=номеру7=80°(за вл. вертикальних кутів)