annakuzina2023
?>

Таблица 8.1 определение и свойства параллелограмм

Геометрия

Ответы

Mark-Petrovich

russian.

тригонометрические функции острого угла в прямоугольном треугольнике. sin, cos, tg, ctg

итак, у каждого прямоугольного треугольника есть два острых угла. для каждого из них можно найти синус, косинус, тангенс и котангенс. здесь главное не перепутать, что к чему относится.

синус острого угла пр. треугольника - это отношение (деление) противолежащего этому углу катета к гипотенузе.

косинус острого угла пр. треугольника - это отношение (деление) прилегающего к этому углу катета   к гипотенузе.

тангенс острого угла пр. треугольника - это отношение противолежащего этому углу катета к прилегающему катету.

котангенс - это наоборот, отношение прилегающего к этому углу катета к противолежащему.

во вложении есть рисунок, там все показано. легче это понять словами, а не на рисунке (лично для меня).

также существует таблица значений синуса, косинуса, тангенса и котангенса для некоторых углов (30°, 45°, 60°, 90°), тоже во вложении. таблицу нужно выучить обязательно.

ukrainian.

тригонометричні функції гострого кута прямокутного трикутника. sin, cos, tg, ctg.

у кожному прямокутному трикутнику є два гострих кута. для кожного з них можна знайти синус, косинус, тангенс та котангенс.

синус гострого кута пр. трикутника - це відношення (ділення) протилежного цьому куту катета до гіпотенузи.

косинус гострого кута пр. трикутника - це, відношення прилеглого цьому куту катета до гіпотенузи.

тангенс гострого кута пр. трикутника - це відношення протилежного цьому куту катета до прилеглого.

котангенс - це, навпаки, відношення прилеглого до цього кута катета до протилежного.

також існує таблиця значень синуса(sin), косинуса (cos), тангенса(tg) та котангенса (ctg) для деяких кутів (30°, 45°, 60°, 90°). таблицю потрібно вивчити.

таблицу можно легко выучить по принципу, данному на сайте

a8227775

68. По данным на рисунке найдите площадь \triangle CKB.

- - -Дано :

ΔСКВ - прямоугольный (∠С = 90°).

СК - высота (СК⊥АВ).

АК = 4, КВ = 16.

Найти :S_{\triangle CKB} ~=~ ?Решение :В прямоугольном треугольнике высота, проведённая к гипотенузе - это среднее геометрическое между отрезками, на которое поделило основание высоты гипотенузу.

Следовательно, CK = \sqrt{AK*KB} = \sqrt{4*16} = \sqrt{2*2*4*4} = 2*4 = 8.

Площадь прямоугольного треугольника равна половине произведения его катетов.

Следовательно, S_{\triangle CKB}=\frac{CK*KB}{2} =\frac{8*16}{2} =\frac{128}{2} =64 ед².

ответ :

64 ед².

- - -

70. ABCD - прямоугольник. Найдите S_{ABCD}.

- - -Дано :

Четырёхугольник ABCD - прямоугольник.

АС - диагональ.

HD⊥АС.

HD = 6, АН = 9.

Найти :

S_{ABCD}~=~ ?

Решение :Прямоугольник - это параллелограмм, все углы которого прямые.

Следовательно ∠D = 90°.

Рассмотрим ΔACD - прямоугольный.

В прямоугольном треугольнике высота, опущенная на гипотенузу - это среднее геометрическое между отрезками, на которое поделило основание высоты гипотенузу.

Следовательно, HD^{2} = AH*HC \Rightarrow HC = \frac{HD^{2} }{AH} = \frac{6^{2} }{9} = \frac{36}{9} =4.

Площадь треугольника равна половине произведения высоты и стороны, на которую опущена эта высота.

Следовательно, S_{\triangle ACD}=\frac{AC*HD}{2} =\frac{(AH+HC)*HD}{2} =\frac{(9+4)*6}{2} = 13*3=39 ед².

Диагональ параллелограмма делит параллелограмм на два равновеликих (равных по площади) треугольника.

Тогда S_{ABCD} = 2*S_{\triangle ACD} = 2*39 ед² = 78 ед².

ответ :

78 ед².

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Таблица 8.1 определение и свойства параллелограмм
Ваше имя (никнейм)*
Email*
Комментарий*