ebelskaia
?>

В чем состоит признак параллельности двух прямых?

Геометрия

Ответы

Olifirenko119

1 признак:

если две прямые на плоскости перпендикулярны одной той же прямой, то они параллельны

2 признак:

 Если при пересечении двух прямых третьей секущей накрест лежащие углы равны, или соответственные углы равны, или сумма односторонних углов равна 180° — то прямые параллельны.

3 признак:

При пересечении двух параллельных прямых третьей секущей:

- накрест лежащие углы равны,

- соответственные углы равны,

- сумма односторонних углов равна 180°.

fafina12586

Площадь полной поверхности пирамиды (обозначим её МАВСD) 

состоит из суммы площадей всех граней. 

Противоположные боковые грани равны по трём сторонам. 

Так как МО перпендикулярна плоскости основания, а ВD⊥АВ и CD, то ОВ – проекция наклонной МВ. 

По т.о 3-х перпендикулярах МВ⊥АВ.

Диагонали параллелограмма точкой пересечения делятся пополам ⇒. ОВ=1,5.

Высота пирамиды МО⊥ОВ. 

 Из ∆ МОВ по т.Пифагора 

МВ=√(МО²+ОВ²)=√(4+2,25)=2,5

Ѕ(АМВ)=МВ•АВ:2=2,5•4:2=5 м²

Ѕ(MCD)=S(AMB) ⇒Ѕ(MCD)+S(AMB)=10 м²

Найдём высоту второй пары боковых граней. 

а) Высота DH прямоугольного ∆ BDH (в основании) равна произведению катетов, делённому на гипотенузу. 

DH=DB•DC:BC=3•4:5=2,4 м

Проведем ОК⊥ВС

ВO=ОD ⇒ ОК - средняя линия ∆ВDH и равна половине DH.

ОК=1,2 м

ОК - проекция наклонной МК. ⇒ По т.ТПП отрезок МК⊥ВС и является высотой ∆ ВМС

б) Из прямоугольного ∆ МОК по т.Пифагора 

МК=√(MO²+OK²)=√(4+1,44)=√5,44

√5,44=√(544/100)=(2√34):10=0,2√34

 S(MBC)=BC•MK:2=0,5•5•0,2√34=0,5√34 м² 

S(AMD)=S(MBC)⇒ S(AMD)+S(MBC)=2•0,5√34=√34 м²

S(ABCD)=DB•AB=3•4=12 м²

Площадь полной поверхности MABCD:

2•S(AMB)+S(ABCD)+2•S(MBC=10+12+√34=(22+√34)м²


Основанием пирамиды является параллелограмм со сторонами 5 м и 4 м и меньшей диагональю 3 м. высота
sklad
А). Построение понятно из рисунка.
б). АС=8√2, ОТ=4√2, ВН=(3/4)*BD=6√2. МР=√(144-32)=√112=4√7.
ВМ/ВК=ВD/BH=4/3. Значит КН параллельна МD и равна (3/4)*MD=9.
Если прямая параллельна прямой лежащей в плоскости,
то она параллельна и самой плоскости.
Что и требовалось доказать.
в). Треугольник ВКН равнобедренный. FH=(1/2)*BH=3√2.
Найдем ЕР. Т.к. КН||МD (доказано), из подобия треугольников КВН и МВD
находим КН=9.  Но РН=НD, и тогда ЕН - средняя линия ∆ РМD,
Е - середина МР, и ЕР=МР/2=2√7. Попутно ЕН=0,5*MD=6, КЕ=9-6=3.
Тр-ки АMP и AQJ подобны (так как QJ параллельна МР), с коэффициентом QJ/MP или k=(2√7)/(4√7)=1/2.
Найдем AQ=(1/2)*AM=6, и из подобия AMC и QMN найдем QN=(1/2)*АС=4√2.
Тогда площадь сечения OQKNT равна сумме площадей треугольника
QKN и параллелограмма (так как QN=ОТ и QN||ОТ) OQNT.
Sqkn=(1/2)*QN*KE или Sqkn=(1/2)*4√2*3=6√2.
Soqnt=OT*EH или Soqnt=4√2*6=24√2.
Sqoknt=Sqkn+Soqnt или Sqoknt=6√2+24√2=30√2.
ответ:Sqoknt=30√2.

Мавсд-- правильная четырехугольная пирамида. точки о и т середины ребер ад и дс. точка к делит ребро

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

В чем состоит признак параллельности двух прямых?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

llipskaya
sharikplushelen
Евгеньевич-Куликов1614
Vorotko814
armentamada1906
nane2924329
mospaskrasnogorbukh
ksankaaleks611
info22
admiral-kazan
vrn3314
Corneewan
helena-belozerova
Alisa1639
adminkuncevo