так как высоты падают на стороны параллелограмма под углами 90 градусов, то находим угол в образовавшемся четырехугольнике (2 высоты и части сторон): 360 - 90-90-30=150 градусов - один из углов параллелограмма, а таких углов в параллелограмме два- противолежащих. Найдем два других: 360-150-150=60 градусов два других угла, а один угол будет равен 30 градусов. Напротив этих 30 градусов лежат высоты 3 и 5, которые являются катетами в прямоугольном треугольнике, а гипотенуза будет равна двум катетам (по свойству: против угла в 30 градусов лежит катет равный половине гипотенузы). Значит одна из сторон равна 6, а другая по аналогии равна 10, следовательно периметр параллелограмма равен 2*(10+6)=32
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Дано дуга ab: ac=3, 2, угол a30градусов найти угол b, угол bx
AC=18 см
Объяснение:
1) Треугольник ABC - равнобедренный ⇒ ∠A=∠C (из свойств равнобедренного треугольника), сумма всех углов треугольника равна 180° (∠A+∠B+∠C=180°) ⇒ ∠A=∠C=(180°-∠B):2=(180°-120°):2=60°:2=30°.
2) Рассмотрим треугольник ADC:
Треугольник ADC - прямоугольный, т.к. AD-высота.
AD и DC - катеты; AC - гипотенуза.
Катет лежащий против угла в 30° градусов равен половине гипотенузы (из свойств прямоугольного треугольника) ⇒ катет AD равен половине гипотенузы AC ⇒ AC=2*AD ⇒ AC=2*9 см = 18 см
ответ: AC=18 см