M- точка пересечения диагоналей. Прямоугольные треугольники ADM и ADE подобны, то есть AM/AB = AB/AE; или AM*AE = AB^2; Ясно, что AM = AC/2; Для AE возможны два варианта 1) точка E лежит ВНУТРИ ромба. В этом случае угол A ромба острый. AE = AC - CE; Получается уравнение (AC/2)*(AC - 12) = 8^2*5; AC^2 - 12*AC - 640 = 0 ; или AC = 32; отсюда AM = 16; BM^2 = (8^2*5 - 16^2) = 8^2; BD = 2*BM = 16; это меньшая диагональ. 2) точка E лежит ВНЕ ромба. В этом случае угол A ромба тупой. AE = AC + CE; Получается уравнение (AC/2)*(AC + 12) = 8^2*5; AC^2 + 12*AC - 640 = 0; или AC = 20; это меньшая диагональ. В задаче есть 2 варианта решения - в зависимости от того, где лежит точка E (или - какой угол A - острый или тупой).
Mikhail579
02.02.2022
Из правильного треугольника АВС: из теоремы Пифагора: высота ВК равна 3 корня из 2. Угол ОАК - это угол между плоскостью АОС и основанием. Поскольку угол ОАК = 30 градусов, то катет ОК равен гипотенузы ОА как катет, который лежит против угла 30 градусов. ОК = ОА/2. Пускай ОК = х, тогда ОА = 2х. Из прямоугольного треугольника ОАК: за теоремой Пифагора: OA^2 = OK^2 + AK^2, 4x^2 = 9 - x^2, 3x^2 = 9, x^2 = 3, x = корень из 3. OK = корень из 3. Объем призмы равен площади основания умножить на высоту: S = So*H = S(ABC)*OK = BK*AC/2*OK = 9 корней из 6.
СОД=90°
ВОА=152°
Объяснение:
СОД=90-28=62 62+28=90°
ВОА=62+90=152°