Дано:
∆АВС - прямокутний (∟B = 90°).
∆А1В1С1 - прямокутний (∟B1 = 90°).
АВ = А1В1. BN - висота (BN ┴ АС).
В1N1 - висота (В1N1 ┴ A1C1).
BN - B1N1. Довести: ∆АВС = ∆А1В1С1.
Доведения:
За умовою: BN - висота (BN ┴ АС), тоді ∟BNC = ∟BNA = 90°.
Аналогічно B1N1 - висота, ∟B1N1C1 = ∟B1N1A1 = 90°.
Розглянемо ∆BNA i ∆B1N1A1.
За умовою BN = B1N1 i BA = В1А1; ∟BNA = ∟B1N1A1 = 90°.
За ознакою pівності прямокутних трикутників маємо: ∆BNA = ∆B1N1A1.
Звідси ∟A = ∟A1.
Розглянемо ∆АВС i ∆А1В1С1.
∟A = ∟A1; ∟ABC = ∟А1В1С1 = 90°. AB = A1B1.
За ознакою piвностi прямокутних трикутників маємо: ∆АВС = ∆А1В1С1.
Доведено.
Объяснение:
Надеюсь правильно.
Поделитесь своими знаниями, ответьте на вопрос:
Решить номера , которые отмеченные красной ручкой. , это заранее
В ∆ АВС высоты АА1 и СС1 со сторонами два прямоугольных треугольника АС1С и АА1С с общей гипотенузой АС.
Следовательно, вокруг них можно описать окружность с диаметром АС, на который опираются прямые углы АС1С и АА1С.
Вписанные углы А1АС и А1С1С опираются на одну дугу А1С. Вписанные углы, опирающиеся на одну дуга, равны. ⇒
∠СС1А1=∠САА1. Доказано.
---------
Рассмотрим ∆ АОС1 и А1ОС.
Эти треугольники подобны по двум углам - прямому при С1 и А1 и вертикальному при точке пересечения высот О.
Из подобия следует пропорциональность сторон:
С1О:А1О=АО:СО,
откуда имеем пропорциональность тех же сторон в ∆ АОС и ∆ А1ОС1.
Вертикальные углы при вершине О этих треугольников равны.
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами, равны, то такие треугольники подобны.
Следовательно, углы СС1А1 и САА1 равны. Доказано.
Объяснение: