Условие задачи НЕ КОРРЕКТНО. По координатам двух противоположных вершин прямоугольника (B и D) определить координаты двух других вершин (А и С) невозможно без дополнительного условия. Дело в том, что вершины прямоугольника лежат на окружности диаметра BD и их бесконечное множество.
Смотри рисунок.
Любой точке на окружности соответствует симметричная ей относительно центра О точка, соединив которые с точками В и D получим прямоугольник, так как углы ВАD и ВСD - прямые (вписанные, опирающиеся на дивметр).
Найдем координаты центра окружности, описанной около данного прямоугольника и ее радиус:
О((-4+2)/2; (2-3)/2) или О(-1;-0,5).
R=|ОВ| = √((-4-(-1))²+(2-(-0,5)²) =√15,25. Тогда уравнение окружности (x+1)² + (y+0,5)² =15,25.
ЛЮБАЯ точка на этой окружности - вершина А, симметричная ей относительно центра О точка - вершина С.
Найдем координаты вершин А и С ПРИ УСЛОВИИ, что стороны прямоугольника параллельны осям ординат.
В уравнение окружности подставим координату Х=-4 и найдем для нее соответствующую координату Y: (-3)² + (y+0,5)² =15,25. => Y² + Y -6 = 0. => Y1=3, Y2=-2. Точно так же для точек с координатой Х=2. Y1=2 и Y2=-3. Тогда имеем: А(-4;-3) и С(2;2).
Поделитесь своими знаниями, ответьте на вопрос:
Якщо промінь ОМ проходить між сторонами кута АОВ то
дано: решение:
ав = 18 см
∠вао = 60°
см. рис. δвоа - прямоугольный
т.к. ∠вао = 60°, то ∠аво = 30°
найти: h - ?
ао - катет прямоугольного треугольника,
s₀ - ? лежащий напротив угла в 30°. => ао = ав: 2 = 9 (см)
тогда:
h = √(ab²-ao²) = √(324-81) = √243 = 9√3 (см)
площадь
основания:
s₀ = πr² = π*ao² = 81π ≈ 254,34 (см²)
ответ: 9√3 см; 254,34 см²