Δ АВС - равнобедренный (по условию), у котрого углы при основании равны ∠1=∠2.
∠1=∠2=(180*-70*)/2 = 55*.
***
Дано тупоугольный треугольник АВС.
Внешний угол при вершине равен 50*.
Найдем внутренний угол В:
180*-50*=130*.
∠1+∠2=180*-130*=50*;
Пусть угол 1 равен 2х. Тогда угол 2 равен 3х.
2х+3х=50*;
5х=50*;
х=10*;
Угол 1 равен 2х=2*10=20*;
Угол 2 равен 3х=3*10=30*.
Panfilov_Anna
02.04.2023
Пусть дан параллелограмм авсd и его диагональ ас. полный угол а равен сумме меньших углов, из которых он состоит, т.е. ваd = вас + dас = 40 + 20 = 60 градусов. теперь рассмотрим сам параллелограмм. сторона ав является секущей по отношению к пареллельным прям вс и аd (противолежащие стороны параллелограмма параллельны друг другу). по теореме о углах, образованный при пересечении параллельных прямых секущей, сумма односторонних углов, коими являются углы авс и ваd, равна 180 градусам, т.е. авс + ваd = 180. авс = 180 - ваd = 180 - 60 = 120 градусов. больший угол параллелограмма авс равен 180 градусам.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
До ть будласка виконати завдання з геометрії терміново
Объяснение:
Решение.
АВС - треугольник.
∠1 - ∠2 =10*.
Найдем внутренний угол А.
∠А=180*-140*=40*.
На угол 1 и угол 2 остается
180*-40*=140*;
∠1+∠2=140*;
Известно, что ∠1 -∠2 =10*. Откуда ∠1=∠2+10*;
∠2+10*+∠2 = 140*;
2∠2=140*-10*;
∠2=65*;
∠1-∠2=10*;
∠1=10*+∠2=10*+65*=75*.
***
Дано треугольник АВС. Внешний угол В равен 110*.
Найдем внутренний угол В:
∠В=180*-110*=70*;
Δ АВС - равнобедренный (по условию), у котрого углы при основании равны ∠1=∠2.
∠1=∠2=(180*-70*)/2 = 55*.
***
Дано тупоугольный треугольник АВС.
Внешний угол при вершине равен 50*.
Найдем внутренний угол В:
180*-50*=130*.
∠1+∠2=180*-130*=50*;
Пусть угол 1 равен 2х. Тогда угол 2 равен 3х.
2х+3х=50*;
5х=50*;
х=10*;
Угол 1 равен 2х=2*10=20*;
Угол 2 равен 3х=3*10=30*.