В равнобедренном треугольнике АВС с основанием АС, ВН - высота. Найдите ВН, если периметр треугольника АВС равен 48 см,
а периметр треугольника ВНС равен 32 см.
ответ или решение1
Так как треугольник ABC равнобедренный и его периметр равен 48, значит AB = BC, а AC = 48 - 2BC.
Высота BH делит AC пополам, соответственно, AH = HC = (48 - 2BC) / 2.
Площадь треугольника BHC равен 32 см.
Составляем уравнение:
BC + (48 - 2BC) / 2 + BH = 32;
Решаем уравнение:
2BC / 2 + (48 - 2BC) / 2 + BH = 32;
(2BC + 48 - 2BC) / 2 + BH = 32;
48 / 2+BH = 32;
24 + BH = 32;
BH = 32-24;
BH = 8
ответ: длина высоты BH равна 8 сантиметра.
Поделитесь своими знаниями, ответьте на вопрос:
Найдите хнужно именно тема подобные треугольники
Угол АDC=93*
Объяснение:
Дано:
Равнобедренный треугольник АВС
Основания АС
АD- биссектриса.
Угол С=58*
Найти: угол АDC.
Мы знаем что, угол С=58*
Также мы знаем теорему равнобедренного треугольника:
У равнобедренного треугоника углы при основании равны.
Значит, угол С= углу А=58*
Рассмотрим треугольник АDC. Так как АD биссектриса значит, чтобы найти угол А в треугольнике АDC, нам надо 58*:2, так как биссектриса делит угол пополам.
Угол А=58*:2= 29*
Угол А=29*
Теперь мы знаем два угла и соотвественно по этим двум углам мы сможем найти угол АDC по теореме сумма углов треугольника:
Сумма углов треугольника равна 180*
Значит, чтобы найти угол АDC нам надо, из 180*-(58*+29*)= 93*
Угол АDC=93*
ответ: Угол АDC=93*