" В треугольник с углами 62° и 78° вписан круг, который касается сторон треугольника в точках k, p и t. найдите углы треугольника kpt."
Объяснение:
Oкр O (r) вписана в ΔАВС ,∠А=62°, ∠В=78°
Найти углы ΔКРТ
Решение .
По т. о сумме углов треугольника ∠С=180°-78°-62°=40°.
По свойству радиуса , проведенного в точку касания ОК⊥АВ, ОР⊥ВС, ОТ⊥АС. Сумма углов 4-х угольника равна 360°.Поэтому
в 4-х угольнике АКОТ :∠КОТ=360°-2*90°-62°=118° ;в 4-х угольнике ВРОК :∠КОР=360°-2*90°-78°=102° ;в 4-х угольнике СРОТ :∠РОТ=360°-2*90°-40°=140° .Получившиеся треугольники с общей вершиной О -являются равнобедренными , т.к ОК=ОР=ОТ=r ⇒ углы при основании равны :
ΔОКТ , ∠К=∠Т=(180°-118°):2=31° ;ΔОРК , ∠К=∠Р=(180°-78°):2=39° ;ΔОТР , ∠Т=∠Р=(180°-140°):2=20° .Поэтому углы ΔКРТ :∠К=70° ,∠Р=59°, ∠Т=51°
" В треугольник с углами 62° и 78° вписан круг, который касается сторон треугольника в точках k, p и t. найдите углы треугольника kpt."
Объяснение:
Oкр O (r) вписана в ΔАВС ,∠А=62°, ∠В=78°
Найти углы ΔКРТ
Решение .
По т. о сумме углов треугольника ∠С=180°-78°-62°=40°.
По свойству радиуса , проведенного в точку касания ОК⊥АВ, ОР⊥ВС, ОТ⊥АС. Сумма углов 4-х угольника равна 360°.Поэтому
в 4-х угольнике АКОТ :∠КОТ=360°-2*90°-62°=118° ;в 4-х угольнике ВРОК :∠КОР=360°-2*90°-78°=102° ;в 4-х угольнике СРОТ :∠РОТ=360°-2*90°-40°=140° .Получившиеся треугольники с общей вершиной О -являются равнобедренными , т.к ОК=ОР=ОТ=r ⇒ углы при основании равны :
ΔОКТ , ∠К=∠Т=(180°-118°):2=31° ;ΔОРК , ∠К=∠Р=(180°-78°):2=39° ;ΔОТР , ∠Т=∠Р=(180°-140°):2=20° .Поэтому углы ΔКРТ :∠К=70° ,∠Р=59°, ∠Т=51°
Поделитесь своими знаниями, ответьте на вопрос:
Даны два угла АОВ и DOC с общей вершиной. Угол АОВ расположен внутри угла DOC . Стороны одного угла перпендикулярны к сторонам другого. Найдите эти углы, если разностьмежду ними равна прямому углу.
Объяснение:
Дано:
<AOB и <COD
<COD внутри <AOB
AO ┴ OD; CO ┴ OB;
<AOB - <COD = 90°
Найти: <AOB и <COD.
Решение
Т.к . AO ┴ OD; CO ┴ OB,
то <AOD = 90; <COB = 90°.
<COD = <AOD - <AOC
<COD = <COB - <DOB
<COD = 90° - <AOC
<COD = 90° - <DOB
Получим
<AOC = 90° - <COD
<DOB = 90° - <COD
Следовательно <AOC = <DOB
2) По условию: <AOB - <COD = 90°
Но если от всего угла <AOB отнять <COD, то останутся два равных угла <AOC и <DOB, значит, это их сумма равна 90°.
<AOC + <DOB = 90° =>
<AOC = <DOB = 90°/2 = 45°
3) <COD = 90° - <DOB
<COD = 90° - 45°=45°
4) <AOB = <AOC + <DOB + <DOB
<AOB = 45° + 45° + 45° = 135°
ответ: <AOB - 135°; <COD =45°.