Рассмотрим множество треугольников, у которых две вершины расположены на диагонали маленького квадрата (на исходном рисунке в условии), а третья лежит на прямой, содержащей диагональ большого квадрата (см. мой рисунок). Заметим, что площади треугольников, входящих в это множество, попарно равны. Действительно, у всех треугольников общая сторона — диагональ малого квадрата, высоты, падающие на эту диагональ тоже равны, поскольку a ║ b.
Значит, площадь серого треугольника равна площади треугольника, указанного на моем рисунке. Площадь среднего квадрата равна 80. Теперь осталось следить за руками: (80+20+20)-40-10-60/2=70-30=40. Площадь равна 40.
Рассмотрим основание пирамиды.Это правильный шестиугольник,состоящий из шести (если соединить его вершины с центром вписанной в него окружности) правильных треугольников.Рассмотрим один из таких треугольников АОВ,где О-центр вписан окр.Опустим из О на АВ перпендикуляр ОК.Это и есть радиус вписанной окр.=12.Эта высота явл. также и медианой,т.е.если сторону (АО) обозначить через хсм,то АК=х/2,а ОК=12 по условию.По т.Пифагора
x^2-x^2/4=144,3x^2=576,x=8 корней из 3.
Рассмотрим треугольник АОS,где S-вершина пирамиды,SO-высота,т.е.угол SOA=90 градусов,AS=16 по условию,а АО мы нашли,как х=8 корней из 3х
Тогда по т.Пифагора высота SO^2=SA^2-OA^2=256-192=64,а SO (высота пирамиды) =8см.
Поделитесь своими знаниями, ответьте на вопрос:
Известно что OC бисектриса угла AOB. Из ниже приведённых предложений верным является: а) угол AOC>COB, б) AOB Можно с рисунком
Объяснение:
Если луч ОС биссектриса угла АОВ,
1) ∠AOC + ∠AOB = ∠COB
2) ∠AOB = ∠AOC
3) ∠AOC = ∠COB
4) ∠AOC = 1/2∠COB
Вроде так)