Билет №1. 1.Фигуры на плоскости 2 Центр окружности, описанной около треугольника, является точкой пересечения перпендикуляров к сторонам треугольника, проведенных через середины этих сторон. 3Рассмотрим ΔBAO и ΔOCD AO=OC - по условию BO=OD - по условию ∠AOB=∠COD - вертикальные ⇒ ΔBAO=ΔOCD - по первому признаку (2 стороны и угол между ними)
Билет №2. 1. геометрическая фигура, образованная двумя лучами (сторонами угла), выходящими из одной точки (которая называется вершиной угла)Это угол равный 180..Любой угол разделяет плоскость на 2 части. Если угол неразвёрнутый, то одна из частей называется внутренней, а другая внешней областью этого угла.Если угол развёрнутый, то любую из двух частей, на которые она разделяет плоскость можно считать внутренней областью угла. Фигуру, состоящую из угла и его внутренней области, так же называют углом.От любой полупрямой в заданную полуплоскость можно отложить угол с заданной градусной мерой, меньшей 180°,и только один. 2. Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею дуги пополам. 3.т. к. Сумма углов треугольника 180°, значит третий угол 180-32-57=91° Билет №3. 1.Равносторонним треугольником называется треугольник, у которого все его стороны равны.1) Все углы равностороннего треугольника равны по 60º.2) Высота, медиана и биссектриса, проведённые к каждой из сторон равностороннего треугольника, совпадают,3)Точка пересечения высот, биссектрис и медиан называется центром правильного треугольника и является центром вписанной и описанной окружностей (то есть в равностороннем треугольнике центры вписанной и описанной окружностей совпадают).4) Точка пересечения высот, биссектрис и медиан правильного треугольника делит каждую из них в отношении 2:1, считая от вершин.6) Расстояние от точки пересечения высот, биссектрис и медиан до любой стороны треугольника равно радиусу вписанной окружности.7) Сумма радиусов вписанной и описанной окружностей правильного треугольника равна его высоте, медиане и биссектрисе.8) Радиус вписанной в правильный треугольник окружности в два раза меньше радиуса описанной окружности. 2.Если из какой-нибудь точки провести две касательные к окружности, то их отрезки от данной точки до точек касания равны между собой и центр окружности находится на биссектрисе угла, образованного этими касательными. 3. Возьмем отрезок АД за х, тогда ОА = х+8: х+х+8=24. 2х=16, х=8
Апраксин Владимир897
15.01.2023
Сгачала найдём координаты вершин получененного треугольника А1В1С1.Так как симметрия относительно точки А ,точки А1 и А совпадут.ПО определению центральной симметрии АВ=А1В и АС=АС1 будет. То есть А будет серединной точки отрезка ВВ1 И СС1. Тогда Координаты точки А, Ви В1 связаны формулой ха=(хв+хв1)/2 и уа=(ув+ув1)/2. , где (ха, уа) координаты точки А и соотвественно (хв; ув)-точки В, (хв1; ув1)- точки В1. Найдём координаты В1. 3=(-1+хв1)/2, получим хв1=6+1=7. 1=(4+ув1)/2, получим ув1=2-4=-2.
Координаты В1 (7;-2). Точно так же находим координаты С1. 3=(-2+хс1)/2, отсюда хс1=6+2=8. 1=(-2++ус1)/2, отсюда ус1=4. Координаты С1 (8; 4). На координатной плоскости строим треугольники, зная координаты их вершин.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Луч OC делит угол АОB на два угла. Найдите угол AOC, если угол BOC = 18 градусов , а угол АOB = 132 градусам
<АОС=114°
Объяснение:
<СОВ=18°
<АОВ=132°
<АОС=?
<АОВ=<АОС+<СОВ
<АОС=<АОВ-<СОВ.
<АОС=132°-18°=114°