На стороне AB равностороннего треугольника ABC взята точка D так, что сумма расстояний от нее до сторон AC и BC равна 16 см. Найдите высоту треугольника, проведенную из вершины C.
РЕШЕНИЕ: Пусть сторона треугольника а. Одно из данных расстояний m, другое – n. Расстояния – это высоты. Находим площади треугольников:
Сюда относится картинка с умножением
Теперь их суммируем:
Сюда с сложением
В левой части полная площадь ABC, правую можно периписать так:
Сюда с сложением и умножением
Где h - высота из вершины C, равна сумме расстояний = 16 см
ОТВЕТ: 16 см
∆ АВС - равнобедренный, его углы при основании АВ равны по 22,5°, поэтому угол АСВ=180°-2•22,5=135°.
Угол между плоскостью ∆ АВС и плоскостью α - двугранный, и его величина равна линейному углу, образованному прямыми, лежащими в соответствующих плоскостях и перпендикулярными линия их пересечения.
ВН - высота тупоугольного ∆ АВС, проведенная к боковой стороне АС, поэтому её основание Н лежит на продолжении стороны АС.
∠ВСН - смежный ∠АСВ и равен 180°-135°=45°
ВН=ВС•sin45°=8•√2/2=4√2
ВН перпендикулярна прямой АС по построению;
наклонная КН, проведенная в точку Н, перпендикулярна прямой АС по теореме о 3-х перпендикулярах, ⇒ ∠КНВ - искомый.
Расстояние от вершины В до плоскости α равно длине перпендикуляра ВК, опущенного из точки В на плоскость α.
По условию ВК=4, ⇒sin∠КНВ=ВК:АН=4:4√2=1/√2=√2/2
Это синус 45°.
Угол между плоскостью АВС и плоскостью α равен 45°.
Поделитесь своими знаниями, ответьте на вопрос:
Используя метод координат, решите задачу: В треугольнике АВС проведена высота АН. ∠В=45о, ВН=4 см, НС=8 см. Найдите длину медианы СМ.
см= 8 см
точно правильно!