Площадь круга равна 16пи см^2. Расстояние от конца перпендикуляра, возведенного из центра окружности до точек окружности, равно 5 см. Найдите длину перпендикуляра
Что тут рисовать? Все очень просто - есть две параллельные прямые (можете их сразу нарисовать - они заданы в задаче, отрезок AB и прямая, ему параллельная). Надо выбрать точку в любом месте С ДРУГОЙ СТОРОНЫ от прямой, чем отрезок AB (к примеру, AB снизу от прямой, а точку надо выбрать в любом месте сверху). Пусть это точка M. Теперь Надо провести MA и MB. Эти прямые пересекут прямую в точках A1 и B1. Затем проводятся диагонали получившейся трапеции AB1 и BA1; они пересекаются в точке O. И наконец, проводится прямая MO, она поделит AB пополам (и A1B1 - тоже). Все операции - это "провести прямую через 2 точки", циркуль тут не нужен, только линейка.
Кстати, на мой взгляд, "базовая задача" должна формулироваться иначе "Пусть в произвольном треугольнике проведена медиана к выбранной стороне. На медиане выбрана произвольная точка, и проведены прямые через эту точку и концы выбранной стороны до пересечения с другими сторонами. Доказать, что прямая, соединяющая концы этих отрезков, параллельна выбранной стороне" (то ,что этот отрезок делится пополам медианой, можно не упоминать - это само собой разумеется). Доказывается это моментально - аналогично теореме Чевы (можно просто на неё сослаться - из того, что одна сторона делится чевианой пополам, сразу получается, что две другие делят стороны в равных отношениях - и это всё доказательство). Хотя это дело вкуса. Обе задачи равноценны, поскольку обратная задача очевидно верна, ведь через точку можно провести только одну прямую параллельно другой прямой.
angelina-uj1350
16.10.2020
Давай обозначим меньшую проекцию (наклонной, которая 13) на базовую прямую незатейливой буквой х. Тогда вторая проекция (наклонной длины 15) будет по условию х+4. Искомое расстояние от точки до прямой обозначим букой Н. Тогда по теореме Пифагора образуется два уравнения:
13 ^2 = x^2 + H^2 15^2 = (x+4)^2 + H^2
Имеем два уравнения с двумя неизвестными. Можно решить. Ну так решим же эту систему методами алгебры.
Проще всего сначала будет исключить Н, тогда получим одно уравнение: 15^2 - (x+4)^2 = 13^2 - x^2 225 - x^2 - 8*x - 16 = 169 - x^2 40 = 8*x x = 5
То есть первая проекция у нас выходит 5 см, вторая, соответственно, 5+4 = 9 см.
Осталось последнее телодвижение - по теореме Пифагора же находим Н = корень ( 13*13 - 5*5) = корень(144) = 12 см -- это ответ.
Ну, у меня так получилось. Лучше проверь, а то с калькулятором не дружу.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Площадь круга равна 16пи см^2. Расстояние от конца перпендикуляра, возведенного из центра окружности до точек окружности, равно 5 см. Найдите длину перпендикуляра
Надо выбрать точку в любом месте С ДРУГОЙ СТОРОНЫ от прямой, чем отрезок AB (к примеру, AB снизу от прямой, а точку надо выбрать в любом месте сверху). Пусть это точка M.
Теперь Надо провести MA и MB. Эти прямые пересекут прямую в точках A1 и B1.
Затем проводятся диагонали получившейся трапеции AB1 и BA1; они пересекаются в точке O.
И наконец, проводится прямая MO, она поделит AB пополам (и A1B1 - тоже).
Все операции - это "провести прямую через 2 точки", циркуль тут не нужен, только линейка.
Кстати, на мой взгляд, "базовая задача" должна формулироваться иначе "Пусть в произвольном треугольнике проведена медиана к выбранной стороне. На медиане выбрана произвольная точка, и проведены прямые через эту точку и концы выбранной стороны до пересечения с другими сторонами. Доказать, что прямая, соединяющая концы этих отрезков, параллельна выбранной стороне" (то ,что этот отрезок делится пополам медианой, можно не упоминать - это само собой разумеется).
Доказывается это моментально - аналогично теореме Чевы (можно просто на неё сослаться - из того, что одна сторона делится чевианой пополам, сразу получается, что две другие делят стороны в равных отношениях - и это всё доказательство).
Хотя это дело вкуса. Обе задачи равноценны, поскольку обратная задача очевидно верна, ведь через точку можно провести только одну прямую параллельно другой прямой.