Стороны данного треугольника равны 15 см, 20 см, 30 см. Найдите стороны треугольника с периметром 26 см, подобного данному треугольнику. Покажите, что отношение площадей треугольников ABC и A1B1C1 равно (3)
Объяснение:
Т.к. стороны ΔАВС равны 15 см, 20 см, 30 см , то отношение этих сторон 3:4:6. Такое же отношение сторон будет и в подобном ΔА₁В₁С₁.
Пусть одна часть сторон ΔА₁В₁С₁ будет х , тогда длина сторон будет равна 3х, 4х,6х.
Т.к. Р(А₁В₁С₁) =26 см , то 3х+ 4х +6х =26 , х=2.
Тогда стороны ΔА₁В₁С₁ такие 6 см ,8 см ,12 см.
Найдем коэффициент подобия к= .
По т. об отношении площадей ,получаем
.
А 3 не получается.
ответ: 1. 10
2. 18
3. Основания 14 и 22. Периметр 64.
Объяснение:
1. Используем теорему о пропорциональных отрезках (если параллельные прямые пересекают стороны угла, то отрезки, образовавшиеся на одной стороне угла, пропорциональны соответствующим отрезкам, образовавшимся на другой стороне).
Составляем пропорцию: 3/6 = 5 /х,откуда х = 5*6 / 3 = 10
2. Рассмотрим треугольник АВС. Отрезок, соединяющий середины его сторон P и M, это средняя линия данного треугольника, она равна половине его основания, т.е. 1/2 диагонали АС. Аналогично для треугольника BCD отрезок MN это средняя линия, и он также равен полочине основания, т.е. диагонали BD.
Рассуждая аналогично для треугольников ACD и ABD находим, периметр MNPQ = 1/2 * АС + 1/2 АС + 1/2 BD + 1/2 BD = AC + BD = 18
У четырехугольника MNPQ противоположные стороны равны и параллельны (По свойству средних линий рассмотренных выше треугольников), значит он является параллелограммом по определению.
3. Рассмотрим ΔABC. ∠BCA =∠ CAD как внутренние накрест лежащие при параллельных прямых, ∠BAC = ∠CAD по условию задачи. Вывод: ∠BAC = ∠BCA, а это углы при основании AC ΔABC. ⇒ Данный треугольник равнобедренный. KM является его средней линией. ⇒ AB = BC = 14.
KL = 7 + 4 + 7 = 18. Поскольку это по условиям задачи среджняя линия трапеции, она равна полусумме оснований трапеции. Находим большее основание:
1/2 AD + 1/2BC = 18
1/2AD + 7 = 18
AD = 22
Периметр трапеции равен 22 + 14 + 14 + 14 = 64
Поделитесь своими знаниями, ответьте на вопрос:
Треугольник с вершинами A B и C равен треугольнику с вершинами в точках K, L и М, A B=LM BC=KL. Назовите пары равных углов
1) если вы построили два треугольника, то должны так расположить вершины второго, чтобы было удобно сравнивать их: Треугольник АВС и треугольник MlK. Отметив равные стороны, то будет видно какие другие соответствующие элементы равны. Третьи стороны АС= МК и углы. 2) По свойству равнобедренного треугольника известно, что медиана и биссектриса и высота, опущенные из вершины, образованной из боковых сторон. Поэтому отрезки получились.