xsmall1
?>

Знайти координати середини відрізка АВ, якщо А(8; - 3), В(4; 7)

Геометрия

Ответы

Остап-Лаврова1410

1. Верно (свойство радиуса, проведённого в точку касания).

2. Неверно. Вписанный угол равен половине центрального соответствующего угла.

3. Неверно. Вписанный угол, опирающийся на полуокружность, равен 90° (так как полуокружность — это дуга в 180°, а градусная мера вписанного угла измеряется половиной градусной меры соответвующией дуги. Откуда вписанный угол равен 180° : 2 = 90°).

4. Верно (теорема о пересекающихся хорд в окружности).

5. Верно. Если расстояние от центра окружности до прямой больше радиуса, то у этой прямой и окружности нет общих точек.

7,499 см (расстояние от центра окружности до прямой) > 7,49 см (радиус окружности). Поэтому, по выше сказанному, у окружности и прямой нет общих точек.

6. Неверно. Такая дуга равна 30°*2 = 60° (смотрите в пункт 3).

7. Верно (свойство отрезков касательных, проведённых из одной точки).

8. Верно (по определению радиуса окружности).

9. Неверно. Прямая называется секущей по отношению к окружности только тогда, когда она имеет с окружностью две общие точки).

10. Верно (свойство касательных).

mokeevahelena
ДАНО: SАВС - правильная треугольная пирамида ; SD = h ; линейный угол двугранного угла ABCS равен 45°.

НАЙТИ: S пол. пов. пирамиды
______________________________

РЕШЕНИЕ:

1) Линейным углом двугранного угла называется угол, образованный лучами с вершиной на ребре, лучи которого лежат на гранях двугранного угла и перпендикулярны ребру.

В основании правильной треугольной пирамиды лежит правильный треугольник, то есть ∆ АВС – равносторонний

В ∆ АВС опустим высоту АН на ВС
В равностороннем треугольнике высота является и медианой, и биссектрисой → ВН = СН

отрезок SD ( высота пирамиды ) перпендикулярен плоскости основания ∆ АВС
Если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой, лежащей в этой плоскости →
SD перпендикулярен АН
АН перпендикулярен ВС
Значит, SH перпендикулярен ВС по теореме о трёх перпендикулярах

Из этого следует, что угол SHА – линейный угол двугранного угла АВСS, то есть угол SHА = 45°

2) Рассмотрим ∆ SHD (угол SDH = 90°):
Сумма острых углов в прямоугольном треугольнике всегда равна 90°
угол HSD = 90° - 45° = 45°

Значит, ∆ SHD – прямоугольный и равнобедренный , SD = DH = h

По теореме Пифагора:
SH² = SD² + DH²
SH² = h² + h² = 2h²
SH = h√2

Как было сказано выше, высота, проведённая в равностороннем треугольнике, является и медианой, и биссектрисой
Медианы любого треугольника пересекаются в одной точке и точкой пересечения делятся в отношении 2 : 1 , считая от вершины
Следовательно, AD : DH = 2 : 1 →
AD = 2 × DH = 2h
AH = AD + DH = 2h + h = 3h

Сторона равностороннего треугольника вычисляется по формуле:

a = \frac{2 \sqrt{3}h }{3}

где а - сторона равностороннего треугольника, h - высота

BC = ( 2√3 × AH ) / 3 = ( 2√3 × 3h ) / 3 = 2√3h

S пол. пов. пирамиды = S осн. + S бок. пов.

В правильной треугольной пирамиде все боковые грани равны друг другу →

S пол. пов. пирамиды = S abc + 3 × S bcs

Площадь равностороннего треугольника вычисляется по формуле:

s = \frac{ {a}^{2} \sqrt{3} }{4}
где а - сторона равностороннего треугольника

S пол. пов. пирамиды =
= \frac{ {(2 \sqrt{3}h )}^{2} \sqrt{3} }{4} + 3 \times \frac{1}{2} \times 2 \sqrt{3}h \times h \sqrt{2 } = \\ \\ = 3 \sqrt{3} {h}^{2} + 3 \sqrt{6} {h}^{2} = 3 \sqrt{3} {h}^{2} (1 + \sqrt{2} )

ОТВЕТ: 3√3h² × ( 1 + √2 )
Высота правильной треугольной пирамиды равна h, а двугранный угол при стороне основания равен 45°. н

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Знайти координати середини відрізка АВ, якщо А(8; - 3), В(4; 7)
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

byfetvostochniy
LesnovaVeronika1830
milenaochirova01017424
Lugovoi
D.Yu. Polina1703
vera2job7
tigo1
Dmitrii sergei463
Anatolevna1703
malgoblin2663
yok887062
Vos-sv
emartynova25
Dodkhobekovich1683
leeteukism