ВD является диагональю ромба, а у ромба диагонали = биссектрисы т.е. делим угол на два:
124° ÷ 2 = 62° - угол ВDC
ответ: угол ВDC = 62°
dentob72
15.10.2020
У колі з радіусами АО і ОВ пряма а проходить через середини радіусів так, що ОЕ = ОА/4. Оскільки відстань - це перпендикуляр, маємо прямокутний трикутник КОЕ та РОЕ. З прямокутного трикутника КОЕ: ОК = ОА/2, ОЕ = ОА/4. Тобто, катет ОЕ у два рази менший за гіпотенузу ОК. Катет, що дорівнює половині гіпотенузи, лежить проти кута 30 градусів. Тобто, кут ОКЕ = 30 градусів. Кут КОЕ = 90 - 30 = 60 градусів. Трикутники КОЕ та РОЕ рівні за прямим кутом та гіпотенузою, тобто кути КОЕ та РОЕ рівні і дорівнюють по 60 градусів. Кут АОВ = <KOE + <POE = 60 + 60 = 120 градусів.
natapetrova20017
15.10.2020
PΔ=36, треугольник правильный, значит сторона треугольника равна : 36:3=12. Опустим высоту в треугольнике до пересечения с окружностью. Соединим полученную точку с одной из оставших вершин заданного треугольника. Получим прямоугольный треугольник, гипотенуза которого является диаметром окружности. Угол между высотой треугольника и его стороной равен 30°. Высота в правильном треугольнике является и биссектрисой и медианой. 60°:2=30°. Вычислим диаметр окружности: d=12:cos30°=12:(√3/2)=24/√3=24·√3/√3·√3=24√3/3=8√3. Диагональю квадрата является диаметр окружности. Обозачим сторону квадрата через а. По теореме Пифагора: a²+a²=d², 2a²=(8√3)². 2a²=64·3, a²=32·3=16·2·3, a=√16·6=4√6. a=4√6.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
На рисунке четырехугольник ABCD – ромб. Найдите угол BDСугол А = 56°
Сумма углов 360° =>
360° - 56° × 2 = 248° = 248° ÷ 2 = 124° углы АDC и АВС
ВD является диагональю ромба, а у ромба диагонали = биссектрисы т.е. делим угол на два:
124° ÷ 2 = 62° - угол ВDC
ответ: угол ВDC = 62°