Yelena Dilyara
?>

Знайдіть площу бічної поверхні правільної трикутної піраміди, якщо площа бічної грані дорівнює = 8 см

Геометрия

Ответы

КутузоваМартенюк
1) В(-2;4), М(3;-1)
Координаты середины отрезка ВС (точки М) находятся по формуле:
Xm = (Xc + Xb)/2, Ym = (Yc + Yb)/2. Отсюда
Xc=2*Xm-Xb или 6-(-2)=8;
Yc=2*Ym-Yb или -2-4 = -6.  Значит С(8;-6).
2) В(4;-3) К(1;5)
Координаты середины отрезка ВМ (точки К) находятся по формуле:
Xk = (Xm + Xb)/2, Yk = (Ym + Yb)/2. Отсюда
Xm=2*Xk-Xb или 2-4=-2;
Ym=2*Yk-Yb или 10-(-3) = 13.  Значит М(-2;13).
Тогда координаты точки С:
Xc=2*Xm-Xb или -4-4=-8;
Yc=2*Ym-Yb или 26-(-3) = 29.  Значит С(-8;29).
ответ: 1) С(8;-6)  2) С(-8;29)
Татьяна1045

1) определение перпендикуляра и наклонной.

пусть дана плоскость и не лежащая на ней точка.

тогда:

·   отрезок прямой, перпендикулярной плоскости, соединяющий данную точку с точкой на плоскости называется перпендикуляром из данной точки к данной плоскости.

·   конец этого отрезка, лежащий в плоскости, называется основанием перпендикуляра.

·   любой отрезок, соединяющий данную точку с точкой на плоскости и не являющийся перпендикуляром к плоскости, называется наклонной.

·   конец отрезка, лежащий в плоскости, называется основанием наклонной.

рис. 1.

на рисунке из точки а проведены к плоскости α перпендикуляр ав и наклонная ас. точка в - основание перпендикуляра, точка с - основание наклонной, вс - проекция наклонной ас на плоскость α.

2) доказательство того, что перпендикуляр корочек наклонной

 

на рисунке 2 изображена плоскость α, перпендикуляр к ней ao, наклонная ab, а также показан отрезок bo, соединяющий основания наклонной и перпендикуляра. отрезки ao, bo и ab образуют δaob.

рис. 2.

рассмотрим δaob, из определения перпендикуляра следует, что он прямоугольный. перпендикуляр ao является катетом этого треугольника, а наклонная ab – его гипотенузой. катет прямоугольного треугольника всегда меньше его гипотенузы (по теореме пифагора), следовательно, перпендикуляр всегда короче наклонной.

3) определение проекции

отрезок, соединяющий основания перпендикуляра и наклонной, проведенных из одной и той же точки, называется проекцией наклонной.

 

отрезок bo на рисунке 2 – является проекцией наклонной ab.

4) теорема о сравнительной длине наклонных и их проекций

а) любая наклонная больше своей проекции.

доказательство:

вновь рассмотрим δaob, изображенный на рис. 2, из определения перпендикуляра следует, что он прямоугольный. проекция bo является катетом этого треугольника, а наклонная ab – его гипотенузой, т. к. катет прямоугольного треугольника всегда меньше его гипотенузы, следовательно, проекция наклонной на плоскость всегда короче самой наклонной.

б) равные наклонные имеют равные проекции

доказательство: рассмотрим треугольники aob и aod, они равны, т. к. равны их гипотенузы ab и ad, и углы aob и aod (они прямые), а сторона ao у них общая. из равенства треугольников следует и равенство их сторон bo = od, что и требовалось доказать.

 

в) если проекции наклонных равны, то и наклонные равны. доказывается аналогично утверждению б.

г) большей наклонной соответствует большая проекция.

доказательство:

рассмотрим прямоугольные треугольники aob и aod, ab > ad.

=  

=  

но так как ab > ad => ab2 > ad2 => >   =>

=> bo > do. что и требовалось доказать.

 

д) из двух наклонных больше та, у которой проекция больше. доказывается аналогично г.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Знайдіть площу бічної поверхні правільної трикутної піраміди, якщо площа бічної грані дорівнює = 8 см
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Latsukirina
alexandrxzx09
ИП_Рамис873
Astrians
uglichdeti
Смирнов-Оськина
asvavdeeva
uzunanna19922488
mashumi2170
Avshirokova51
shturman-765255
Галстян874
fucksyara
Елена Надыч524
Vasilevskii