kononenko-elena4
?>

Три шара с радиусами 1, 2 и 3 касаются друг друга. Найдите площадь треугольника, образованного центрами шаров сферы.

Геометрия

Ответы

sbarichev330

6

Объяснение:

а=1+2=3

в=2+3=5

с=3+1=4

По формуле Герона S= √p (p−a) (p−b) (p−c) , полупериметр

p= 1 ÷2 *(a+b+c).

p=6 ,p-a=6-3=3 ,p-b=6-5=1, p-c=6-4=2

S= √6*3*1*2=6

ekaizer
1. Рассмотрим осевое сечение конуса - треугольник АВС, он правильный. У правильного треугольника высота опущенная из точки В на сторону АС будет его медианой и биссектрисой. А если так то угол АВД=углу ДВС. Угол АВД = 30 градусов.
2. Рассмотрим треугольник ВБС. Угол Д равен 90 градусов, потому что ВД высота. Треугольник ВБС прямоугольный. За теоремой косинусов находим сторону треугольника АВС.
cos углаДВС=ВД/ВС. ВС=ВД/cos углаДБС.
3. Площадь треугольника равна половине площади прямоугольника.
S=(АС*ВД)/2
kruttorg
Окружность, уравнение которой x^2+y^2 = 4 - это окружность с центром в начале координат радиусом 2., поскольку уравнение окружности таково: (x - a)^2 + (y - b)^2 = R^2 с центром в точке O(a;b) Радиуса R. Из условия имеем: (x - 0)^2 + (y - 0)^2 = 2^2. Далее, Из условия AB = BM. Рассмотрим это со следующего ракурса: AB = BM - радиусы некоторой окружности. На рисунке как бы мы не проводили хорду АВ, АВ будет равна ВМ и точка М будет лежать на той самой окружности. И хорда АМ большой окружности будет делится надвое радиусом в точке меньшей окружности (B, B1, B2 ... Bn). Получается, множество точек М - это некая окружность с центром B(2;0) радиусом 4. И уравнение такой окружности будет иметь вид: (x-2)^2 + y^2 = 16.

25 за подробное решение : дана окружность х² + у²=4 . из точки а(-2; 0) проведена хорда ав, которая
25 за подробное решение : дана окружность х² + у²=4 . из точки а(-2; 0) проведена хорда ав, которая
25 за подробное решение : дана окружность х² + у²=4 . из точки а(-2; 0) проведена хорда ав, которая

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Три шара с радиусами 1, 2 и 3 касаются друг друга. Найдите площадь треугольника, образованного центрами шаров сферы.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Shamil
annanudehead1426
egornostaeva
apetrov13
olimp201325
Васильевичь Виктория457
anna241273
Рафаэль633
puma802
myliar21585356
nataljatchetvertnova
chechina6646
grishin
Дмитрий_Евлампиев518