Ольга
?>

По данным рисунка наличие периметр трапеции​

Геометрия

Ответы

dmitrovlug8248

Лови, сам решал, должно быть верно


По данным рисунка наличие периметр трапеции​
Александровна

Проекции катетов на гипотенузу прямоугольного треугольника - это отрезки гипотенузы, на которые ее делит высота, т.к. высота - перпендикуляр к прямой ( гипотенузе), а катеты – наклонные из вершины прямого угла.  

Катет - среднее пропорциональное между гипотенузой и его проекцией на неё .

В треугольнике на рисунке приложения  

Катет Вс=30 см, а ВН=18 - его проекция на гипотенузу.  

BC²=АВ•НВ

900=АВ•18

АВ=900:18=50 см

Высота, проведенная к гипотенузе, делит прямоугольный треугольник на подобные. Из подобия следует отношение:

АН:АС=АС:АВ

АН=50-18=32

32:АС=АС:50 ⇒  АС²=32•50    

АС=√1600=40 см

Если обратить внимание на отношение катета и гипотенузы 3:5 в ∆ ВСН, увидим, что этот треугольник - египетский. Отсюда следует АВ=50 см, (т.к. меньший катет=30). а АС=40 см. Получим длины сторон треугольника, отношение которых  3:4:5.

Объяснение:

pk199888
Найдем радиус вписанной окружности по формуле r=√mn, где m и n - длины отрезков, на которые точка касания делит большую сторону.
r=√3*12=√36=6 см.
Высота трапеции равна 2 радиусам вписанной окружности, поэтому h=6*2=12 см.
Меньшая боковая сторона = h = 12 см.
Сумма боковых сторон = 12+3+12=27 см.
Из свойств описанной трапеции следует, что сумма длин боковых сторон равна сумме длин оснований. Сумма оснований=27 см.
Находим площадь трапеции, которая равна полусумме оснований, умноженной на высоту.
S=27:2*12=162 см².
ответ: 162 см².

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

По данным рисунка наличие периметр трапеции​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Станислав Валерий1696
kitoova
Nikishina
Taniagrachev
mlf26
avanesss
Maria095096
sanseth5
А Дзукаев1562
Sonyamaslo6
sindika
saltikovaK.S.1482
Takhmina-Komarova1415
eremenkou
fedorenkoroman